tìm n thuộc Z sao cho 9n+3/3n+1
ai giúp mình giải thì thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{9n+3}{3n+1}=\frac{3\cdot\left(3n+1\right)}{3n+1}=3\forall n\in Z\)
\(\frac{9n+3}{3n+1}=\frac{3\left(3n+1\right)}{3n+1}\in Z\) nên với mọi số nguyên n thì \(\frac{9n+3}{3n+1}\in Z\)
\(\frac{n^{2014}+n^{2013}+2}{n+1}\)=\(\frac{n\cdot n^{2013}+n^{2013}+2}{n+1}\)=\(\frac{n^{2013}\cdot\left(n+1\right)+2}{n+1}\)=\(\frac{n^{2013}\cdot\left(n+1\right)}{n+1}+\frac{2}{n+1}\)=\(n^{2013}+\frac{2}{n+1}\)
Để \(\frac{n^{2014}+n^{2013}+2}{^{n+1}}\)là số nguyên thì 2⁞n+1=>n+1 thuộc ước của 2
n+1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
=>2(3n-1) chia hết cho 2n+1
=>(6n+3)-3-2 chia hết cho 2n+1
=>3(2n+1)-5 chia hết cho 2n+1
Mà 3(2n+1) chia hết cho 2n+1
=>5 chia hết cho 2n+1
=>2n+1 thuộc Ư(5)={1;5;-1;-5}
=>2n thuộc {0;4;-2;-6}
=> n thuộc {0;2;-1;-3}
d) Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(\Leftrightarrow1⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2n\in\left\{0;-2\right\}\)
hay \(n\in\left\{0;-1\right\}\)
Mk trả lời mỗi câu khó nha!!!
d*) \(\dfrac{n+1}{2n+1}\in Z\)
Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(n+1⋮2n+1\)
\(\Rightarrow2.\left(n+1\right)⋮2n+1\)
\(\Rightarrow2n+2⋮2n+1\)
\(\Rightarrow2n+1+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
2n+1 | -1 | 1 |
n | -1 | 0 |
Vậy \(n\in\left\{-1;0\right\}\)
(3n+2):(n-1) = 3 + 5/(n-1)
a)Để 3n+2 chia hêt cho n-1
thì n-1 phải là ước của 5
do đó:
n-1 = 1 => n = 2
n-1 = -1 => n = 0
n-1 = 5 => n = 6
n-1 = -5 => n = -4
Vậy n = {-4; 0; 2; 6}
thì 3n+2 chia hêt cho n-1.
c)3n+2 chia hết cho 2n-1
6n-3n+2 chia hết cho 2n-1
3(2n-1)+2 chia hết cho 2n-1
=>2 chia hết cho 2n-1 hay 2n-1 thuộc Ư(2)={1;-1;2;-2}
=>2n thuộc{2;0;3;-1}
=>n thuộc{1;0}
b) có n thuộc Z =>3n+1 thuộc Z, n-3 thuộc Z
A=3n+1 / n-3 có giá trị nguyên <=> 3n+1 chia hết cho n-3
<=>3n-9+10 chia hết cho n-3
<=>3(n-3)+10 chia hết cho n-3
<=>10 chia hết cho n-3 ( vì 3(n-3) chia hết cho n-3)
<=>n-3 thuộc Ư (10)
n-3 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | 4 | 2 | 5 | 1 | 8 | -2 | 13 | -7 |
vậy tất cả các giá trị nguyên n đều thỏa mãn
n thuộc {4;2;5;1;8;-2;13;-7}
b,do n thuộc Z =>3n+1 thuộc Z
n-3 thuộc z
n-3 không bằng 0
<=>n-3 không bằng 0 và 3n+1 thuộc Z thì A=\(\frac{3n+1}{n-3}\)là số nguyên (thuộc Z)
1. A.
\(n+2⋮n+1\)
\(\Rightarrow\left(n+1\right)+1⋮\left(n+1\right)\)
Mà \(\left(n+1\right)⋮\left(n+1\right)\)
Nên \(1⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)€\)Ư(1)
(n+1) € {1;—1}
TH1: n+1=1 TH2: n+1=—1
n =1–1 n =—1 —1
n =0 n =—2
Vậy n€{0;—2}
1a)
n+2 chia hết cho n-1
hay (n-1)+3 chia hết cho n-1 (vì (n-1)+3=n+2)
Mà (n-1) chia hết cho n-1
nên 3 chia hết cho n-1
Suy ra n-1 thược Ư(3)={1;-1;3;-3}
Suy ra n thuộc {2;0;4;-2}
b) 3n-5 chia hết cho n-2
hay (3n-6)+1 chia hết cho n-2 (vì (3n-6)+1=3n-5)
3(n-2)+1 chia hết cho n-2
Mà 3(n-2) chia hết cho n-2
nên 1 chia hết cho n-2
Suy ra n-2 thược Ư(1)={1;-1}
Suy ra n thuộc {3;1}
Ta có: (9n+3 ) chia hết cho (3n+1)
=> ( 3 . 3.n + 3.1 ) chia hết cho ( 3 n + 1)
=> 3.( 3n + 1 ) chia hết cho ( 3n +1)
=> 3 chia hết cho (3n+1)
=> 3n + 1 E Ư ( 3)
Vậy: 3n+1 = { -3;-1;1;3}
=> n = { 0}