Cho tam giác DEF cân tại f gọi i k lần lượt là trung điểm của de df chứng minh a tam giác DIF bằng tam giác akc và AK = fI b gọi b gọi h là giao điểm của AK và el chứng minh tam giác ade là tam giác cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bổ sung đề: D và E lần lượt là trung điểm của AB và AC
a) Ta có: \(AD=DB=\dfrac{AB}{2}\)(D là trung điểm của AB)
\(AE=EC=\dfrac{AC}{2}\)(E là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AD=DB=AE=EC
Xét ΔABE và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
AE=AD(cmt)
Do đó: ΔABE=ΔACD(c-g-c)
b) Ta có: ΔABE=ΔACD(cmt)
nên BE=CD(hai cạnh tương ứng)
c) Xét ΔDBC và ΔECB có
DB=EC(cmt)
\(\widehat{DBC}=\widehat{ECB}\)(hai góc ở đáy của ΔABC cân tại A)
BC chung
Do đó: ΔDBC=ΔECB(c-g-c)
Suy ra: \(\widehat{DCB}=\widehat{EBC}\)(hai góc tương ứng)
hay \(\widehat{KBC}=\widehat{KCB}\)
Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)(cmt)
nên ΔKBC cân tại K(Định lí đảo của tam giác cân)
d) Xét ΔABK và ΔACK có
AB=AC(ΔABC cân tại A)AK chung
BK=CK(ΔKBC cân tại K)Do đó: ΔABK=ΔACK(c-c-c)
Suy ra: \(\widehat{BAK}=\widehat{CAK}\)(hai góc tương ứng)
mà tia AK nằm giữa hai tia AB,AC
nên AK là tia phân giác của \(\widehat{BAC}\)(đpcm)
a) Ta có: \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)
\(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AD=AE
Xét ΔABE và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
AE=AD(cmt)
Do đó: ΔABE=ΔACD(c-g-c)
Kham khảo phần a nha , còn b + c tớ tự lm , d chưa nghĩ ra
a, Ta cs : AB = AC ( cân tại A )
Lại cs : \(\hept{\begin{cases}D\in AB\\E\in AC\end{cases}\Rightarrow\hept{\begin{cases}AB=AC+DB\\AC=AE+EC\end{cases}}}\)
Và : \(\hept{\begin{cases}AD=DB\left(DlatrungdiemcuaAB\right)\\AE=EC\left(ElatrungdiemcuaAC\right)\end{cases}}\)
=> AD = BD = AE = EC
Xét \(\Delta\)ABE và \(\Delta\)ACD có :
AE = AD (cmt)
^A_chung
AB = AC (gt)
=> \(\Delta\)ABE = \(\Delta\)ACD(c.g.c)
b, Vì \(\Delta\)ABE = \(\Delta\)ACD
=> BE = CD (2 cạnh tương ứng)
c, Xét \(\Delta\)DBC và \(\Delta\)ECB cs :
BD = EC (cmt)
^DBC = ^ECB (phần a)
BC_chung
=> \(\Delta\)DBC = \(\Delta\)ECB(c.g.c)
=> ^DCB = ^EBC (2 góc tương ứng)
Xét \(\Delta\)KBC cs :
^KBC = ^KCB (cmt)
=> đpcm
Xét tam giác ABE và tam giác ACD :
có :+ AB = AC ( theo GT )
+ \(\widehat{A}\)là góc chung
+ AD = AE (theo GT )
=> tam giác ABE = tam giác ACD ( cgc)
b) ta có ; tam giác ADE -= tam giác ACD => BE = CD ( VÌ 2 CẠNH TƯƠNG ỨNG )
c) TA có : tam giác ABE = tam giác ACD => \(\widehat{B}\)= \(\widehat{C}\)( VÌ 2 GÓC TƯƠNG ỨNG )
=> Tam giác KBC ( cân đỉnh K )
a)ta có:
AB=DC mà AE=1/2 AB, KC= 1/2 DC
=>AE=KC
Xét tứ giác AECK, ta có:
AE//KC(AB//KC và AE thuộc AB và KC thuộc DC)
=>tứ giác AECK là hình bình hành.
b) chỗ DE vuông góc CE có đúng không vậy để mai mình làm tiếp
a, D, E là trung điểm của AB và AC (gt)
AB = AC do tam giác ABC cân tại A (gt)
=> AD = AE = AB/2
xét tam giác ABE và tam giác ACD có : góc A chung
AB = AC (cmt)
=> tam giác ABE = tam giác ACD (c-g-c)
b, tam giác ABE = tam giác ACD (Câu a)
=> BE = CD (đn)
c, tam giác ABE = tam giác ACD (câu a)
=> góc ABE = góc ACD (đn)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc ABE + góc EBC = góc ABC
góc ACD + góc DCB =góc ACB
=> góc KBC = góc KCB
=> tam giác KBC cân tại K (đn)
d, tam giác KBC cân tại K (câu c)
=> BK = CK (đn)
xét tam giác AKB và tam giác AKC có : AB = AC
góc ABK = góc ACK
=> tam giác AKB = góc AKC (c-g-c)
=>góc BAK = góc CAK (đn) mà AK nằm giữa AB và AC
=> AK là phân giác của góc BAC (đn)
Bài 1:
a: Ta có: \(AD=DB=\dfrac{AB}{2}\)
\(AE=EC=\dfrac{AC}{2}\)
mà AB=AC
nên AD=DB=AE=EC
Xét ΔADC và ΔAEB có
AD=AE
\(\widehat{DAC}\) chung
AC=AB
Do đó: ΔADC=ΔAEB
b: Ta có; ΔAEB=ΔADC
=>BE=CD
c: Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
=>\(\widehat{DCB}=\widehat{EBC}\)
=\(\widehat{KBC}=\widehat{KCB}\)
=>ΔKBC cân tại K
Bài 2:
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HB^2=13^2-12^2=25\)
=>\(HB=\sqrt{25}=5\left(cm\right)\)
BC=BH+CH
=5+16
=21(cm)
ΔAHC vuông tại H
=>\(AH^2+HC^2=AC^2\)
=>\(AC^2=12^2+16^2=400\)
=>\(AC=\sqrt{400}=20\left(cm\right)\)
Chu vi tam giác ABC là:
AB+AC+BC=13+20+21=34+20=54(cm)