K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

Áp dụng ............... ta có :

 \(\frac{a+b}{c+d}=\frac{a}{c}=\frac{b}{d}=K\)

\(\frac{a-b}{c-d}=\frac{a}{c}=\frac{b}{d}=K\)

\(DoK=K\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)( đúng ) 

25 tháng 7 2016

làm tào lao

29 tháng 8 2016

bacd=dacb vay ...

10 tháng 12 2016

tự làm đi cái này không khó 

23 tháng 2 2017

\(\frac{a}{b}=\frac{b}{c}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{ab}{bc}\)

\(=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ab}{bc}=\frac{a}{c}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+b^2}{b^2+c^2}\)

Vậy \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\) (dpcm)

10 tháng 6 2017

vì a,b,c tỉ lệ nghịch với 1/2;1/5;1/7 nên a/2=b/5=c/7. Hay a/2=b/5=2c/14

                            ADTCCDTSBN TA CÓ

a/2=b/5=2c/14=a+b-2c/2+5-14=70/-7=-10

Suy ra a/2=-10 nên a=-20

          b/5=-10 nên b=-50

          2c/14=-10 nên c=-70

10 tháng 6 2017

Biết 3 số a,b,c chúng tỉ lệ nghịch với 1/2 ; 1/5 ; 1/7

=> a/2 = b/5 = c/7

=> a/2 = b/5 = -2c/-14

Áp dụng tc dãy tỉ số = nhau ta đc :

a/2 = b/5 = -2c/-14 = (a+b-2c)/(2+5-14) = 70/-7 = -10

=>a= -20 ; b= -50 ; c = -70

=> a+b-c = 0

25 tháng 11 2018

\(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}=\frac{10a+b}{10b+c}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

        \(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}=\frac{10a+b}{10b+c}=\frac{10a+b-b}{10b+c-c}=\frac{10a}{10b}=\frac{a}{b}\)

\(\Rightarrow\frac{b}{c}=\frac{a}{b}\Rightarrow b^2=ac\)

\(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)

4 tháng 12 2019

Nhanh lên

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=1\)

\(\Rightarrow\)\(a+b+c=a+b-c\)\(\Leftrightarrow\)\(c=0\)

24 tháng 7 2019

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\)

\(\Leftrightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)

\(\Leftrightarrow\frac{a+b+9a}{a+b}=\frac{b+c+9b}{b+c}\)

\(\Leftrightarrow1+\frac{9a}{a+b}=1+\frac{9b}{b+c}\)

\(\Leftrightarrow\frac{9a}{a+b}=\frac{9b}{b+c}\)

\(\Leftrightarrow\frac{a}{a+b}=\frac{b}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)=b\left(a+b\right)\)

\(\Leftrightarrow ab+ac=ab+b^2\)

\(\Leftrightarrow ac=b^2\)

\(\Leftrightarrow\frac{a}{b}=\frac{b}{c}\)

Ta có:

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\Rightarrow\frac{\overline{ab}}{\overline{bc}}=\frac{a+b}{b+c}=\frac{\overline{ab}-\left(a+b\right)}{\overline{bc}-\left(b+c\right)}\)

\(=\frac{10a+b-a-b}{10b+c-b-c}=\frac{9a}{9b}=\frac{b}{a}\)

\(\frac{a+b}{b+c}=\frac{a}{b}=\frac{a+b-a}{b+c-b}=\frac{b}{c}\)

Vậy: \(\frac{a}{b}=\frac{b}{c}\left(b,c\ne0\right)\)

Bn ơi mk nghĩ đề phải là : giả thuyết \(c\ne0\)bn nhé.......

#kiseki no enzeru#

hok tốt