Bài 1 : Cho đơn thức: A =
a) Thu gọn đơn thức A.
b) Xác định hệ số và bậc của đơn thức A.
c) Tính giá trị của A tại
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. A= 2. (-x)5 . y5
b. Hệ số là 2
Phần biến là (-x)5 . y5
Bậc là 10
c. 2. [-(-2)]5 . 15
= 2. 32 = 64
a: \(A=3x^2y^3\left(-2x^3yz^4\right)\)
\(=3\cdot\left(-2\right)\cdot x^2\cdot x^3\cdot y^3\cdot y\cdot z^4\)
\(=-6x^5y^4z^4\)
Hệ số là -6
bậc là 5+4+4=13
b: Thay x=1 và y=2 và z=-1 vào A, ta được:
\(A=-6\cdot1^5\cdot2^4\cdot\left(-1\right)^4=-6\cdot16=-96\)
a, \(A=2x^5yz^8\)
b, hệ số 2 ; biến x^5yz^8 ; bậc 14
c, Thay x = -1 ; y = 1 ta được 2 . (-1) . 1 = -2
\(a,A=\text{2x}^2y^3.\left(-3x^3y^4\right)\\ =2.\left(-3\right)\left(x^2x^3\right)\left(y^3y^4\right)\\ =-6x^5y^7\)
b, Hệ số: -6
Bậc: 12
a: \(A=\dfrac{2}{3}x^3y\cdot\dfrac{3}{4}xy^2\cdot z^2\)
\(=\left(\dfrac{2}{3}\cdot\dfrac{3}{4}\right)\cdot\left(x^3\cdot x\right)\cdot\left(y\cdot y^2\right)\cdot z^2\)
\(=\dfrac{1}{2}x^4y^3z^2\)
b: \(A=\dfrac{1}{2}x^4y^3z^2\)
bậc của đa thức A là 4+3+2=9
c: \(A=\dfrac{1}{2}x^4y^3z^2\)
Hệ số là \(\dfrac{1}{2}\)
Phần biến là \(x^4;y^3;z^2\)
d: Thay x=-1;y=-2;z=-3 vào A, ta được:
\(A=\dfrac{1}{2}\cdot\left(-1\right)^4\cdot\left(-2\right)^3\cdot\left(-3\right)^2\)
\(=\dfrac{1}{2}\left(-8\right)\cdot9=-4\cdot9=-36\)
a: \(M=\left(-\dfrac{2}{3}xy^3\right)^3\cdot\left(3xy^2\right)^3\)
\(=-\dfrac{8}{27}\cdot x^3y^9\cdot27\cdot x^3y^6\)
\(=-8x^6y^{15}\)
b: Hệ số của M là -8
Phần biến của M là \(x^6;y^{15}\)
Bậc của M là 6+15=21
c: Thay x=-1 và y=1 vào M, ta được:
\(M=-8\cdot\left(-1\right)^6\cdot1^{15}=-8\)
Với mọi x, y khác 0 ta có
\(x^4>0\)
\(y^4>0\)
=> \(x^4.y^4>0\)
=> A > 0 \(\forall x,y\ne0\)
a) Ta có: \(A=2xy^2\cdot\left(\dfrac{1}{2}x^2y^2x\right)\)
\(=x^4y^4\)
b) Bậc của đơn thức là 8
lỗi ảnh
đang sửa
;-;