1) Xét đa thức P(x)=ax+b. Chứng minh rằng nếu P(x) có 2 nghiệm x1, x2 khác nhau thì a=b=0 ( hay P(x) là đa thức không ).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x) có hai nghiệm x1, x2 khác nhau => P(x1) = 0 và P(x2) = 0
=> P(x1) = P(x2) => a.x1 + b = a.x2 + b => a.x1 = a.x2 => a.(x1 - x2) = 0 => a = 0 (Vì x1 khác x2 nên x1 - x2 khác 0)
Mà P(x1) = 0 => a.x1 + b = 0 ; a = 0 => b = 0
Vậy a = b = 0
mot da thuc bac 2 có cao nhat la 2 nghiem bạn xem lại de bai
\(P\left(x\right)-Q\left(x\right)=x^2+ax+b-x^2-cx-d=x\left(a-c\right)+b-d\)
\(P\left(x_1\right)-Q\left(x_1\right)=x_1\left(a-c\right)+b-d=0\) (1)
\(P\left(x_2\right)-Q\left(x_2\right)=x_2\left(a-c\right)+b-d=0\) (2)
-Từ (1) và (2) suy ra:
\(x_1\left(a-c\right)=x_2\left(a-c\right)\)
-Vì \(x_1\ne x_2\Rightarrow a-c=0\Rightarrow a=c\Rightarrow b=d\)
-Vậy \(P\left(x\right)=Q\left(x\right)\forall x\)
P(x) có hai nghiệm x1, x2 khác nhau => P(x1) = 0 và P(x2) = 0
=> P(x1) = P(x2) => a.x1 + b = a.x2 + b => a.x1 = a.x2 => a.(x1 - x2) = 0 => a = 0 (Vì x1 khác x2 nên x1 - x2 khác 0)
Mà P(x1) = 0 => a.x1 + b = 0 ; a = 0 => b = 0
Vậy a = b = 0
P(x) có hai nghiệm x1, x2 khác nhau => P(x1) = 0 và P(x2) = 0
=> P(x1) = P(x2) => a.x1 + b = a.x2 + b => a.x1 = a.x2 => a.(x1 - x2) = 0 => a = 0 (Vì x1 khác x2 nên x1 - x2 khác 0)
Mà P(x1) = 0 => a.x1 + b = 0 ; a = 0 => b = 0
Vậy a = b = 0
\(x_1,x_2\)là các nghiệm của P(x) = ax + b nên ta có:
\(P\left(x_1\right)=ax_1+b=0\left(1\right)\)
\(P\left(x_2\right)=ax_2+b=0\left(2\right)\)
\(P\left(x_1\right)-P\left(x_2\right)=a\left(x_1-x_2\right)=0\left(3\right)\)
Vì \(x_1\ne x_2\)nên \(x_1-x_2\ne0,\)từ (3) suy ra a = 0.
Thay a = 0 vào (1): \(0.x_1+b\Rightarrow b=0.\)Vậy a = b = 0. Đa thức không.