\(\left(3x-\frac{1}{2}\right)+\left(\frac{1}{2}y+\frac{3}{5}\right)=0
\)
Giúp mik bài tìm x,y này với các bạn. Khó quá
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)
vì \(\left|\frac{3}{2}x+\frac{1}{9}\right|\ge0;\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0=>\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0\) (với mọi x,y)
Mà \(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\) (theo đề)
Nên \(\left|\frac{3}{2}x+\frac{1}{9}\right|=0=>\frac{3}{2}x=-\frac{1}{9}=>x=-\frac{2}{27}\)
\(\left|\frac{1}{5}y-\frac{1}{2}\right|=0=>\frac{1}{5}y=\frac{1}{2}=>y=\frac{5}{2}\)
Vậy...........
Ta có:
3x-1/2 = 0
3x= 1/2
x= 1/6
và 1/2y + 3/5 =0
1/2y = -3/5
y= -6/5
Vậy x= 1/6 và y = -6/5
\(\left(3x-\frac{1}{2}\right)+\left(\frac{1}{2}y+\frac{3}{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-\frac{1}{2}=0=\frac{1}{6}\\\frac{1}{2}y+\frac{3}{5}=0=\frac{6}{5}\end{cases}}\)
Vậy ......
a.
\(-\frac{2}{3}-\frac{1}{3}\times\left(2x-5\right)=\frac{3}{2}\)
\(-\frac{2}{3}-\frac{2}{3}x+\frac{5}{3}=\frac{3}{2}\)
\(\left(-\frac{2}{3}+\frac{5}{3}\right)-\frac{2}{3}x=\frac{3}{2}\)
\(\frac{3}{3}-\frac{2}{3}x=\frac{3}{2}\)
\(1-\frac{2}{3}x=\frac{3}{2}\)
\(\frac{2}{3}x=1-\frac{3}{2}\)
\(\frac{2}{3}x=\frac{2}{2}-\frac{3}{2}\)
\(\frac{2}{3}x=-\frac{1}{2}\)
\(x=-\frac{1}{2}\div\frac{2}{3}\)
\(x=-\frac{1}{2}\times\frac{3}{2}\)
\(x=-\frac{3}{4}\)
b.
\(\frac{1}{3}x+\frac{2}{5}\times\left(x-1\right)=0\)
\(\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)
\(x\times\left(\frac{1}{3}+\frac{2}{5}\right)=\frac{2}{5}\)
\(x\times\left(\frac{5}{15}+\frac{6}{15}\right)=\frac{2}{5}\)
\(x\times\frac{11}{15}=\frac{2}{5}\)
\(x=\frac{2}{5}\div\frac{11}{15}\)
\(x=\frac{2}{5}\times\frac{15}{11}\)
\(x=\frac{6}{11}\)
Chúc bạn học tốt
a ) \(-\frac{2}{3}-\frac{1}{3}\left(2x-5\right)=\frac{3}{2}\)
\(\frac{1}{3}\left(2x-5\right)=-\frac{2}{3}-\frac{3}{2}\)
\(\frac{1}{3}\left(2x-5\right)=\frac{-13}{6}\)
\(\left(2x-5\right)=-\frac{13}{6}:\frac{1}{3}\)
\(\left(2x-5\right)=-\frac{13}{6}.\frac{3}{1}\)
\(\left(2x-5\right)=-\frac{13}{2}\)
\(2x=-\frac{13}{2}+5\)
\(2x=-\frac{3}{2}\)
\(\Rightarrow x=-\frac{3}{2}:2\)
\(\Rightarrow x=-\frac{3}{2}.\frac{1}{2}\)
\(\Rightarrow x=-\frac{3}{4}\)
Ta có : \(\left(3x-\frac{y}{5}\right)^2\ge0;\left(2y+\frac{3}{7}\right)^2\ge0\)
\(=>\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2\ge0\)
Mà \(\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2=0\)nên dấu "=" xảy ra
\(< =>\hept{\begin{cases}3x-\frac{y}{5}=0\\2y+\frac{3}{7}=0\end{cases}}< =>\hept{\begin{cases}3x-\frac{y}{5}=0\\y=-\frac{3}{14}\end{cases}}\)
\(< =>\hept{\begin{cases}x=-\frac{1}{70}\\y=-\frac{3}{14}\end{cases}}\)
Ta có : \(\left(x+y-\frac{1}{4}\right)^2\ge0;\left(x-y+\frac{1}{5}\right)^2\ge0\)
Cộng theo vế ta được : \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2\ge0\)
Mà \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2=0\)nên dấu "=" xảy ra
\(< =>\hept{\begin{cases}y+x=\frac{1}{4}\\y-x=\frac{1}{5}\end{cases}}< =>\hept{\begin{cases}y=\frac{9}{40}\\x=\frac{1}{40}\end{cases}}\)
\(\left|x^2-3x\right|+\left|\left(x+1\right)\left(x-3\right)\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}\left|x^2-3x\right|=0\\\left|\left(x+1\right)\left(x-3\right)\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-3x=0\\\left(x+1\right)\left(x-3\right)=0\end{cases}}\)
Xét \(x^2-3x=0\)
\(\Rightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Xét \(\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vì xét 2 trị biểu thức , một cái có 2 giá trị (0 or 3) , một cái (-1 or 3)
Nên ta lấy cái chung
=> x = 3
Theo BĐT AM - GM cho 3 số dương, ta có: \(\left(3x+1\right)\left(y+z\right)+x=3xy+3zx+x+y+z\)
\(\ge3xy+3zx+3\sqrt[3]{xyz}=3zx+3xy+3=3\left(zx+xy+1\right)\)(Do xyz = 1)
\(\Rightarrow\frac{1}{\left(3x+1\right)\left(y+z\right)+x}\le\frac{1}{3\left(zx+xy+1\right)}\)(1)
Tương tự ta có: \(\frac{1}{\left(3y+1\right)\left(z+x\right)+y}\le\frac{1}{3\left(xy+yz+1\right)}\)(2); \(\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\le\frac{1}{3\left(yz+zx+1\right)}\)(3)
Cộng theo từng vế của 3 BĐT (1), (2), (3), ta được: \(P\le\frac{1}{3}\left(\frac{1}{xy+yz+1}+\frac{1}{yz+zx+1}+\frac{1}{zx+xy+1}\right)\)
Ta có BĐT: \(a^3+b^3\ge ab\left(a+b\right)\)
Thật vậy, với a, b dương thì (*)\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\Leftrightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Áp dụng BĐT trên và sử dụng giả thiết xyz = 1, ta được: \(\frac{1}{xy+yz+1}=\frac{\sqrt[3]{xyz}}{y\left(z+x\right)+\sqrt[3]{xyz}}\)
\(=\frac{\sqrt[3]{xyz}}{y\left[\left(\sqrt[3]{z}\right)^3+\left(\sqrt[3]{x}\right)^3\right]+\sqrt[3]{xyz}}\le\frac{\sqrt[3]{xyz}}{y\sqrt[3]{zx}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{xyz}}\)
\(=\frac{\sqrt[3]{xyz}}{\sqrt[3]{y^3zx}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{xyz}}=\frac{\sqrt[3]{xyz}}{\sqrt[3]{y^2}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{xyz}}\)
\(=\frac{\sqrt[3]{zx}}{\sqrt[3]{y}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{zx}}=\frac{\sqrt[3]{zx}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}\)(*)
Tương tự: \(\frac{1}{yz+zx+1}\le\frac{\sqrt[3]{xy}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}\)(**); \(\frac{1}{zx+xy+1}\le\frac{\sqrt[3]{yz}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}\)(***)
Cộng theo từng vế của 3 BĐT (*), (**), (***), ta được: \(\frac{1}{xy+yz+1}+\frac{1}{yz+zx+1}+\frac{1}{zx+xy+1}\le\frac{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}=1\)
\(\Rightarrow P\le\frac{1}{3}\left(\frac{1}{xy+yz+1}+\frac{1}{yz+zx+1}+\frac{1}{zx+xy+1}\right)\le\frac{1}{3}\)
Đẳng thức xảy ra khi x = y = z = 1
a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)
=>\(3x-\frac{1}{2}=0;\frac{1}{2}y+\frac{3}{5}=0\left(\left|3x-\frac{1}{2}\right|;\left|\frac{1}{2}y+\frac{3}{5}\right|\ge0\right)\)
=>\(x=\frac{1}{6};y=\frac{-6}{5}\)
b)\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)
Ta lại có:
\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0\)
=>\(\frac{3}{2}x+\frac{1}{9}=0;\frac{1}{5}y-\frac{1}{2}=0\Rightarrow x=-\frac{2}{27};y=\frac{5}{2}\)
a) \(\left|\frac{1}{2}+x\right|+\left|x+y+z\right|+\left|\frac{1}{3}+y\right|=0\)
=> \(\left|\frac{1}{2}+x\right|=\left|x+y+z\right|=\left|\frac{1}{3}+y\right|=0\)
1/2 + x = 0 => x = -1/2
1/3 + y = 0 => y = -1/3
-1/2 + -1/3 + z = 0
=> z = 5/6
( 3x - 1/2 ) + ( 1/2y + 3/5 ) = 0
=> ( 3 x - 1/2 ) = 0
3x = 0+1/2
3x = 1/2
x = 1/2 : 3
x = 1/6
=> ( 1/2 y + 3/5 ) = 0
1/2y = 0 - 3/5
1/2 y = -3/5
y = -3/5 : 1/2
y = -6/5