K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

x;y;z có vai trò tương đương nên giả sử: \(0< x\le y\le z\)

Khi đó ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{3}{x}\Rightarrow\frac{3}{x}\ge1\Rightarrow x\le3\). Do x;y;z thuộc N* nên:

  • x = 1 => không tìm được y,z thuộc N* - Loại
  • x = 2: \(\Rightarrow\frac{2}{y}\ge\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\Rightarrow x=2\le y\le4\). Nếu y = 2 thì không tìm được z. Nếu y = 3; z = 6. Nếu y = 4 thì z = 4.
  • x = 3 => y = 3; z = 3

Vậy có 3 bộ số thỏa mã đề bài là (2; 3; 6); (2 ; 4 ; 4) ; (3 ; 3 ; 3)

Đảo các bộ số này với x ; y; z ta có 10 nghiệm của PT.

18 tháng 12 2016

M = x+y/z + x+z/y + y+z/x

M = x+y+z/z + x+y+z/y + x+y+z/x - z/z - y/y - x/x

M = (x+y+z).(1/z + 1/y + 1/x) - 1 - 1 - 1

M = 2020.1/202 - 3

M = 10 - 3 = 7

18 tháng 12 2016

đg cần

28 tháng 8 2016

Ta có :

\(\frac{10}{7}< \frac{14}{7}=2\Rightarrow x< 2\)

Mà \(x\in N\)

TH1 : \(x=0;\)ta có :

\(\frac{1}{y+\frac{1}{z}}=\frac{10}{7}\)

\(\Rightarrow y+\frac{1}{z}=\frac{7}{10}\)

Mà \(\frac{7}{10}< 1\)

\(\Rightarrow y< 1\)

Mà \(y\in N\)

\(\Rightarrow y=0\)

\(\Rightarrow\frac{1}{z}=\frac{7}{10}\)

\(\Rightarrow z=\frac{10}{7}\)

Mà \(\frac{10}{7}\notin N\)

Do đó loại trường hợp này.

TH2 : \(x=1;\)ta có :

\(1+\frac{1}{y+\frac{1}{z}}=\frac{10}{7}\)

\(\Rightarrow\frac{1}{y+\frac{1}{z}}=\frac{10}{7}-1\)

\(\Rightarrow\frac{1}{y+\frac{1}{z}}=\frac{3}{7}\)

\(\Rightarrow y+\frac{1}{z}=\frac{3}{7}\)

Mà \(\frac{3}{7}< 1\)

\(\Rightarrow y< 1\)

Mà \(y\in N\)

\(\Rightarrow y=0\)

\(\Rightarrow\frac{1}{z}=\frac{3}{7}\)

\(\Rightarrow z=\frac{7}{3}\)

Mà \(\frac{7}{3}\notin N\)

Do đó không có x ;y ; z thỏa mãn đề bài .
 

21 tháng 9 2016

a) vì y+z+1/x = x+z+2/y = x+y-3/z = 1/x+y+z

=>

y+z+1/x = x+z+2/y = x+y-3=y+z+1+x+z+2+x+y-3/x+y+z = 2x+2y+2z/x+y+z = 2

=> 2 = 1/ x+y+z => x+y+z=1/2

sau đó áp dụng tính chất dãy tỉ số = hau

4 tháng 11 2016

y+x+z bằng bao nhiêu mới tính ra được chứ?? sai đề à??

9 tháng 3 2020

\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)=\(\frac{1}{x+y+z}\)

\(\frac{\left(y+z+x+z+x+y\right)+\left(1+2-3\right)}{x+y+z}\)=\(\frac{1}{x+y+z}\)

\(\frac{2x+2y+2x}{x+y+z}\)=\(\frac{1}{x+y+z}\)

2=\(\frac{1}{x+y+z}\)(1)

Từ(1) => \(\frac{1}{x+y+z}\)=2 => x+y+z=0,5=>x+z=0,5-y(2)

Từ(1)=> x+y+1=2x(3)

             x+z+2=2y(4)

            z+y-3=2z(5)

Thay(2) vào (4) ta được: 0,5-y+2=2y

                              =>    2,5=3y

                             => y=\(\frac{5}{6}\)

Thay y=\(\frac{5}{6}\)vào(3) ta được:x+\(\frac{5}{6}\)+1=2x

                                            \(\frac{11}{6}\)=x

Thay x=\(\frac{11}{6}\); y=\(\frac{5}{6}\)vào x+y+z=0,5 ta đươc:

\(\frac{11}{6}\)+\(\frac{5}{6}\)+z=0,5

z=\(\frac{-13}{6}\)

      Vậy ............

chúc bn học tốt.

k cho mik nha                                    

6 tháng 3 2019

a) TA có:

(x+2)x(y-3)=5 => x+2 và y-3 thuộc Ư(5)= 1,5,-1,-5

Ta có bảng

x+215-1-5
y-351-5-1
x-13-3-7
y84-22
4 tháng 3 2018

Bạn tra trên mạng là có ngay.