Cho tam giác ABC . Gọi M là trung điểm BC.So sánh :
a) góc A và góc C
b) MAB và MAC
c) AMB và AMC
Giải chi tiết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có AB<AC
mà \(\widehat{ACB};\widehat{ABC}\) lần lượt là góc đối diện của cạnh AB,AC
nên \(\widehat{ACB}< \widehat{ABC}\)
b: Trên tia đối của tia MA, lấy D sao cho MA=MD
Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
=>AC=BD
Ta có: ΔMAC=ΔMDB
=>\(\widehat{MAC}=\widehat{MDB}\)
=>\(\widehat{MAC}=\widehat{ADB}\)(1)
Ta có: AC=BD
AC>AB
Do đó: BD>AB
Xét ΔBAD có BD>BA
mà góc BAD,góc BDA lần lượt là góc đối diện của các cạnh BD,BA
nên \(\widehat{BAD}>\widehat{ADB}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{MAB}>\widehat{MAC}\)
a: Sửa đề; ΔMAB=ΔMDC
Xét ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔMAB=ΔMDC
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hbh
=>AB//CD và AB=CD<AC
=>góc CAD<góc CDA
=>góc CAD<góc BAM
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
a: Xét ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔMAB=ΔMDC
b: ΔMAB=ΔMDC
=>góc MAB=góc MDC
=>AB//CD
c: Xét ΔAHB vuông tại H và ΔDKC vuông tại K có
AB=DC
góc ABH=góc DCK
=>ΔAHB=ΔDKC
=>AH=DK
Bạn tự vẽ hình nha
a.
Xét tam giác ABM và tam giác NCM có:
AM = NM (M là trung điểm của AN)
AMB = NMC (2 góc đối đỉnh)
MB = MC (M là trung điểm của BC)
=> Tam giác ABM = Tam giác NCM (c.g.c)
b.
ABM = NCM (tam giác ABM = tam giác NCM)
mà 2 góc này ở vị trí so le trong
=> AB // CN
mà AB _I_ CD
=> CD _I_ CN
=> DCN = 900
Chúc bạn học tốt