Tính giá trị của biểu thức: B = (x-1).(x-2).(x-3). ... .(x-35) tại x =34
Giải giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B= (x-1).(x-2)....(x-35)
Thay x=34 vào B, ta được:
B=(34-1).(34-2).....(23-34).(34-35)
B= 0
Vậy B=0
Ta có : \(B\text{=}4x^2-12x+9\)
\(B\text{=}\left(2x-3\right)^2\)
Với \(x\text{=}\dfrac{1}{2}\)
\(\Rightarrow B\text{=}\left(2.\dfrac{1}{2}-3\right)^2\)
\(B\text{=}\left(-2\right)^2\text{=}4\)
Ta có : \(A\text{=}5\left(x+3\right)\left(x-3\right)+\left(2x+3\right)^2+\left(x-6\right)^2\)
\(A\text{=}5\left(x^2-9\right)+\left(2x+3\right)^2+\left(x-6\right)^2\)
\(A\text{=}5x^2-45+4x^2+12x+9+x^2-12x+36\)
\(A\text{=}10x^2\)
Với \(x\text{=}-\dfrac{1}{5}\)
\(\Rightarrow A\text{=}10.\left(-\dfrac{1}{5}\right)^2\text{=}\dfrac{2}{5}\)
B = 4x² - 12x + 9
= (2x - 3)²
Tại x = 1/2 ta có:
B = (2.1/2 - 3)²
= (-2)²
= 4
-------------------
A = 5(x + 3)(x - 3) + (2x + 3)² + (x - 6)²
= 5x² - 45 + 4x² + 12x + 9 + x² - 12x + 36
= 10x²
Tại x = 1/5 ta có:
A = 10.(1/5)²
= 2/5
a: \(B=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\dfrac{x^2-4+10-x^2}{x+2}\)
\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}=\dfrac{-1}{x-2}\)
b: Khi x=1/2 thì \(B=\dfrac{-1}{\dfrac{1}{2}-2}=\dfrac{2}{3}\)
Khi x=-1/2 thì B=2/5
c: Để B nguyên thì \(x-2\in\left\{1;-1\right\}\)
hay \(x\in\left\{3;1\right\}\)
a, đk : x khác -2 ; 2
\(B=\left(\dfrac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{x^2-4+10-x^2}{x+2}\right)\)
\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}:\dfrac{6}{x+2}=\dfrac{1}{2-x}\)
b, Ta có \(\left|x\right|=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2};x=-\dfrac{1}{2}\)
Với x = 1/2 ta được \(B=\dfrac{1}{2-\dfrac{1}{2}}=\dfrac{2}{3}\)
Với x = -1/2 ta được \(B=\dfrac{1}{2+\dfrac{1}{2}}=\dfrac{2}{5}\)
c, \(\dfrac{1}{2-x}\Rightarrow2-x\inƯ\left(1\right)=\left\{\pm1\right\}\)
2-x | 1 | -1 |
x | 1 | 3 |
\(35\times m+35\times n+35\times p\)
\(=35\times\left(m+n+p\right)\)
Thay \(m=3;n=2;p=5\) vào biểu thức trên ta có:
\(35\times\left(3+2+5\right)=35\times10=350\)
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
Thay x = 1 và y = -2 ta có
12 -2.1.(-2) - (-2)2 + 4.1 .(-2)
= 1 - 2.1. (-2) - 4 + 4.1.(-2)
= 1 - (-4) - 4 + (-8)
= -7
Theo quy luật trên, trong biểu thức $B$ sẽ có nhân tử $(x-34)$
Mà với $x=34⇒x-34=0$
Nên $B=(x-1)(x-2)(x-3).....(x-34)(x-35)=(x-1).(x-2).(x-3).....0.(x-35)=0$
Vậy $B=0$
B= (X-1).(X-2).(X-3). ... .(X-34).(X-35) tại X = 34
B= (34-1).(34-2).(34-3)....(34-34).(34-35)
B= 33.32.31. ... .0.(-1)
B=0