Cho ∆ABC có góc B > 90°. Gọi d là đường trung trực của BC, O là giao điểm của AB và d. Trên tia đối của tia CO lấy điểm E sao cho CE = BA. Chứng minh rằng d là trung trực của AE
(Thánh nào hiển linh giúp em)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GỌI I LÀ GIAO ĐIỂM CỦA AE VÀ ĐƯỜNG THẲNG d
GỌI M LÀ GIAO ĐIỂM CỦA BC VÀ TIA Od
XÉT \(\Delta BMO\)VÀ\(\Delta CMO\)CÓ
\(BM=CM\left(GT\right)\)
\(\widehat{BMO}=\widehat{CMO}=90^o\)
MO LÀ CẠNH CHUNG
=>\(\Delta BMO\)=\(\Delta CMO\)(C-G-C)
\(\Rightarrow\widehat{O_1}=\widehat{O_2}\)( HAI GÓC TƯƠNG ỨNG)
=> TIA Od là tia phân giác của \(\widehat{BOC}\)
VÌ ĐIỂM I NẰM TRÊN TIA Od
=>\(AI=EI\left(1\right)\)(ĐIỂM nẰM TRÊn TIA PHÂn GIÁC THÌ CÁCH ĐỀU HAI CẠnH GÓC ĐÓ :> )
VÌ \(\Delta BMO=\Delta CMO\left(CMT\right)\)
=> OB = OC (2)
=>\(\Delta BOC\)CÂN TẠI O
TA CÓ \(BO+BA=AO\)
\(CO+CE=EO\)
MÀ \(AB=CE\left(GT\right);BO=CO\)(TỪ 2)
\(\Rightarrow AO=EO\)
=> \(\Delta AOE\)CÂN TẠI O
XÉT \(\Delta AOE\)CÂN TẠI O \(\Rightarrow\widehat{OAE}=\frac{180^o-\widehat{AOE}}{2}\left(3\right)\)
XÉT \(\Delta BOC\)CÂN TẠI O \(\Rightarrow\widehat{OBC}=\frac{180^o-\widehat{AOE}}{2}\left(4\right)\)
TỪ (3) VÀ (4) => \(\widehat{OAE}=\widehat{OBC}\)
MÀ HAI GÓC NÀY Ở VỊ TRÍ ĐỒNG VỊ BẰNG NHAU
=> \(BC//AE\)
=> \(\widehat{M_1}=\widehat{I_1}=90^o\)( đồng vị)
\(\Rightarrow\widehat{I_1}=90^o\left(5\right)\)
từ (1) và (5) =>d là trug trực của AE
c tự vẽ hình nha, vì O là giao điểm của AB và d mà d là đường trung trực của BC nên O là điểm thuộc đường trung trực của BC, nên OB=OC(tính chất đường trung trực của đoạn thẳng)
mà AB=CE nên AB+OB=OC+CE hay OA=OE
=>O là điểm thuộc đường trung trực của AE(tính chất đường trung trực của đoạn thẳng)
mà O thuộc đường thẳng d nên d là đường trung trực của AE.
Vậy d là trung trực của AE