a, b, c là độ dài 3 cạnh tam giác. Chứng minh:
a, 1 < \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)
b, 1 < \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Bổ sung đê: góc ABC=60 độ
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>BA=BE
mà góc ABE=60 độ
nên ΔBAE đều
c: Xét ΔEAC có góc EAC=góc ECA=30 độ
nên ΔEAC cân tại E
d: AB=5cm
góc ABC=60 độ
ΔABC vuông tại A có cos ABC=AB/BC
=>BC=10cm
=>AC=5*căn 3(cm)
Ký hiệu:
AB=c; AC=b; cạnh huyền BC=a; đường cao CH=h Ta có
Xét hai t/g vuông AHC và ABC có
\(\widehat{C}\)chung
\(\widehat{CAH}=\widehat{ABC}\)(cùng phụ với \(\widehat{C}\))
=> t/g AHC đồng dạng với ABC \(\Rightarrow\frac{b}{a}=\frac{h}{c}\Rightarrow bc=ah\)
Xét t/g vuông ABC có
\(b^2+c^2=a^2\Rightarrow\left(b+c\right)^2=a^2+2bc\)
\(\Rightarrow\left(b+c\right)^2=a^2+2ah\)( bc=ah chứng minh trên)
\(\Rightarrow\left(b+c\right)^2=\left(a^2+2ah+h^2\right)-h^2=\left(a+h\right)^2-h^2\)
\(\Rightarrow\left(b+c\right)^2+h^2=\left(a+h\right)^2\)
=> b+c; a+h; h là 3 cạnh của tam giác vuông trong đó cạnh huyền là a+h
Sorry!!!
Phần ký hiệu sửa thành
Đường cao AH=h
Ta có : a+b > c , b+c > a , c+a > b
Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)
Vậy ta có đpcm
Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)
Xét tam giác ABC có ba cạnh BC = a, CA = b, AB = c. Phân giác của các góc A, B, C lần lượt là AD = x, BE = y, CF = z.
Kẻ DM // AB \((M\in AC)\).
Ta có \(\widehat{ADM}=\widehat{BAD}=\widehat{MAD}\Rightarrow\) Tam giác AMD cân tại M.
Do đó AM = MD.
Áp dụng định lý Thales với DM // AB ta có:
\(\dfrac{MD}{AB}=\dfrac{CM}{AC}=1-\dfrac{AM}{AC}=1-\dfrac{DM}{AC}\Rightarrow\dfrac{MD}{AB}+\dfrac{MD}{AC}=1\Rightarrow\dfrac{1}{MD}=\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{1}{b}+\dfrac{1}{c}\).
Mặt khác theo bất đẳng thức tam giác ta có \(x=AD< AM+MD=2MD\Rightarrow MD>\dfrac{x}{2}\Rightarrow\dfrac{1}{MD}< \dfrac{2}{x}\Rightarrow\dfrac{1}{b}+\dfrac{1}{c}< \dfrac{2}{x}\).
Tương tự \(\dfrac{1}{c}+\dfrac{1}{a}< \dfrac{2}{y};\dfrac{1}{a}+\dfrac{1}{b}< \dfrac{2}{z}\).
Cộng vế với vế của các bđt trên rồi rút gọn ta có đpcm.
1. Đặt $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=T$
$\frac{a}{b+c}> \frac{a}{a+b+c}$
$\frac{b}{c+a}> \frac{b}{c+a+b}$
$\frac{c}{a+b}> \frac{c}{a+b+c}$
$\Rightarrow T> \frac{a+b+c}{a+b+c}=1$ (đpcm)
----
Xét hiệu:
$\frac{a}{b+c}-\frac{2a}{a+b+c}=\frac{-a(b+c-a)}{(b+c)(a+b+c)}<0$ theo BĐT tam giác
$\Rightarrow \frac{a}{b+c}< \frac{2a}{a+b+c}$
Tương tư: $\frac{b}{c+a}< \frac{2b}{c+a+b}$
$\frac{c}{a+b}< \frac{2c}{a+b+c}$
Cộng theo vế:
$T< \frac{2(a+b+c)}{a+b+c}=2$
$\frac{b}{a+c}
2.
Áp dụng BĐT AM-GM:
\(\frac{b+c}{a}.1\leq \frac{1}{4}(\frac{b+c}{a}+1)^2=\frac{(b+c+a)^2}{4a^2}\)
\(\Rightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}\)
Tương tự với các phân thức còn lại và cộng theo vế:
$\Rightarrow T\geq \frac{2(a+b+c)}{a+b+c}=2$
Dấu "=" xảy ra khi $b+c=a; c+a=b; a+b=c\Rightarrow a=b=c=0$ (vô lý)
Vậy dấu "=" không xảy ra, tức là $T>2>1$ (đpcm)