Chứng tỏ rằng:
A,6 mũ 100 trừ 1 chia hết cho 5
B,21 mũ 20 trừ 11 mũ 10 chia hết cho 2 và 5
Trả lời giúp mình với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 6x6=36=>hai số có tận cùng là 6 nhân với nhau được tích tận cùng là 6
Mà 6 mũ 100=36 mũ 50=..........
=> 6 mũ 100 có tận cùng =6
=> 6 mũ 100-1 có tận cùng =5=>chia hết cho 5
21^20-11^10=(........1)-(..........1)=(...........0) chia hết cho 2 và 5
=>21^20-11^10 chia hết cho 2 và 5 (đpcm)
85 + 211 = (23)5 + 211 = 215 + 211
= 211.24 + 211.1 = 211.(16 + 1) = 211 . 17 (chia hết cho 17)
692 - 69.5 = 69.69 - 69.5
= 69.(69 - 5) = 69.64 = 69.2. 32 (chia hết cho 32)
87 - 218 = (23)7 - 218 = 221 - 218
= 218. 23 - 218.1 = 218.(8 - 1)
= 218 . 7 = 217 . 2 . 7 = 217 . 14 (chia hết cho 14)
Ta có: Luỹ thừa bậc n của 6 (n thuộc N) có chữ số tận cùng là 6
Nên 6 mũ 100 có chữ số tận cùng là 6
Suy ra 6 mũ 100 - 1 có chữ số tận cùng là 6-1=5
Do đó 6 mũ 100 -1 chia hết cho 5
Lại có: Luỹ thừa bậc n của 21 và 11 (n thuộc N) có chữ số tận cùng là 1
Nên 21 mũ 20 và 11 mũ 10 đều có chữ số tận cùng là 1
Suy ra 21 mũ 20 - 11 mũ 10 có chữ số tận cùng là 1-1=0
Do đó 21 mũ 20 - 11 mũ 10 chia hết cho cả 2 và 5 (chia hết cho 10)
Những số chia hết cho 10 đều có chữ số tận cùng là số 0
\(21^{20}=21\cdot21\cdot...\cdot21\) (20 số 21)
=> \(21^{20}\)có chữ số tận cùng là 1
\(11^{10}=11\cdot11\cdot...\cdot11\)(10 số 11)
=> \(11^{10}\)có chữ số tận cùng là 1
=> \(21^{20}-11^{10}\) sẽ có chữ số tận cùng là 0
=> \(21^{20}-11^{10}\)chia hết cho 10
Bài 1:
a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)
\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
b) Ta có: \(\left(2x-3\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)
\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)
\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài 2:
a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)
b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)
c) \(3+3^2+3^3+...+3^{2007}\)
\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2005}\right)⋮13\)
a;
A = 109 + 108 + 107
A = 107.(102 + 10 + 1)
A = 106.2.5.(100 + 10 + 1)
A = 106.2.5.111
A = 106.2.555 ⋮ 555 (đpcm)
b;
B = 817 - 279 - 919
B = 914 - 39.99 - 919
B = 914 - 3.38.99 - 919
B = 914 - 3.94.99 - 919
B = 914 - 3.913 - 919
B = 913.(9 - 3 - 96)
B = 913.(9 - 3 - \(\overline{..1}\))
B = 913.(6 - \(\overline{..1}\))
B = 913.\(\overline{..5}\)
B ⋮ 9; B ⋮ 5
B \(\in\) BC(9; 5) = 9.5 = 45
B ⋮ 45 (đpcm)
Ban "ten to sieu dai yyyyyyyyyyyyyyyyyyyyyyy...." oi! ban dung khoe ten nua. ten dai koa dk j dau ma khoe.
Mình Cần gấp quá ! ai trả lời mình tâu người đó làm sư tổ
tận cùng là 6 thì mũ mấy cũng là sáu nên trừ 1 tận cùng là 5 nên cia hết cho 5