K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

\(2^{4^n}+4=16^n+4=\left(...6\right)+4=\left(...0\right)\) chia hết cho 10

=>\(2^{4^n}+4\) chia hết cho 10 (đpcm)

Áp dụng phương pháp "tìm chữ số tận cùng" để chứng minh nhé :)

14 tháng 12 2021

\(b,n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)\\ =\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Vì \(n\in Z\) và n lẻ nên \(n=2k+1\left(k\in Z\right)\)

\(\Leftrightarrow\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\\ =2k.\left(2k+2\right).\left(2k-2\right).\left(2k+4\right)\\ =16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)

Vì \(k,k+1,k-1,k+2\) là 4 số nguyên liên tiếp nên chia hết cho \(1.2.3.4=24\)

Do đó \(16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮24.16=384\)

14 tháng 12 2021

Câu c đâu chị

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

30 tháng 12 2016

chứng minh theo pp quy nạp

chứng minh đúng với n=1

giả sử đúng với n=k

cần chứng minh đúng với n=k+1

3 tháng 1 2017

@nguyễn thị anh ơi, quy nạp có thể học lớp chuyên nhưng lớp thường đến lớp 11 mới học đấy

23 tháng 2 2015

tong 1+2+3+...+n=(n+1)n/2 . vi n(n+1) la 2 so tu nhien lien tiep nen tan cung bang 0;2;6 suy ra N=1+2+3+4+5+...+n-7= (n+1)n/2-7

suy ra N tan cung bang 3;4;6 suy ra khong chia het cho 10

23 tháng 2 2015

Vay con n.(n+1) con phai chia cho 2 nua

13 tháng 10 2016

10^k + 8^k + 6^8 là chẵn

9^k + 7^k + 5^k là lẻ

mà chẵn - lẻ là lẻ 

=> hiệu trên là lẻ

tương tư thì câu 2 cũng giải như vậy

13 tháng 10 2016

chiu

tk nhe

xin do

bye