Tìm x nguyên biết ( x ^ 2 -1 ) ( x ^ 1 - 4 ) ( x ^ 1 -7 ) ( x ^ 1 -10 ) < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
a) -4/5 + 5/2x = -3/10
5/2x = -3/10 + 4/5
5/2x = 1/5
5/2x = 1/2
x = 1/2 : 5/2
x = 1/5
b) 4/3 + 5/8 : x = 1/12
5/8x = 1/12 - 4/3
5/8x = -5/4
5 = -5/4.8x
5 = -10x
5/-10 = x
-1/2 = x
x = -1/2
c) (x - 1/3)(x - 2/5) = 0
x - 1/3 = 0 hoặc x - 2/5 = 0
x = 0 + 1/3 x = 0 + 2/5
x = 1/3 x = 2/5
\(x^2-1>x^2-4>x^2-7>x^2-10\)
\(\text{Để }\left(x^2-1\right).\left(x^2-4\right).\left(x^2-7\right).\left(x^2-10\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left(x^2-1\right)>0\\\left(x^2-4\right).\left(x^2-7\right).\left(x^2-10\right)< 0\end{cases}\text{hoặc }\hept{\begin{cases}\left(x^2-1\right).\left(x^2-4\right).\left(x^2-7\right)>0\\\left(x^2-10\right)< 0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}\text{hoặc }\hept{\begin{cases}x^2>7\\x^2< 10\end{cases}}}\)
\(\Rightarrow x^2=9\Rightarrow x=\pm3\)
(x^2-1)(x^2-4)(x^2-7)(x^2-10)<0
=> có 3 thừa số âm, 1 thừa số dương
dĩ nhiên thừa so dương là thừa số lớn nhất trong biểu thức. vậy x^2-1 lớn nhất. => x^2 - 1 >0 thì x^2 >1
mặt khác, cũng có thể là 3 thừa so dương, 1 thừa số âm
dĩ nhiên thừa số âm là thừa số có giá trị nhỏ nhất trong biểu thức. vậy x^2-10 nhỏ nhất => x^2 - 10 <0 thì x^2 < 10
giới hạn vị trí của x^2, ta được:
10>x^2>1^2
=> x^2= {4;9}
nếu x^2=4 thì x^2-4=0 => biểu thức=0
vậy x^2=9 thì x={3;-3}
\(1,x.\left(x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}}\)
\(2,\left(x+12\right).\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)
\(3,\left(-x+5\right).\left(3-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Rightarrow\orbr{\begin{cases}-x=-5\\x=3\end{cases}\Rightarrow}\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
\(4,24:\left(3x-2\right)=-3\)
\(3x-2=-8\)
\(3x=-6\)
\(x=-2\)
\(5,-45:5\left(-3-2x\right)=3\)
\(5\left(-3-2x\right)=-15\)
\(-3-2x=-3\)
\(2x=0\)
\(x=0\)
\(6,x.\left(2+x\right)\left(7-x\right)=0\)
\(x=0\) hoặc \(\orbr{\begin{cases}2+x=0\\7-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=7\end{cases}}}\)
\(7,\left(x-1\right)\left(x+2\right)\left(-x+3\right)=0\)
TH1: x-1=0 TH2 : x+2=0 TH3: -x+3=0
x=1 x=-2 -x=-3 => x=3
`@` `\text {Ans}`
`\downarrow`
`2+(x+3)=7`
`\Rightarrow x+3=7-2`
`\Rightarrow x+3=5`
`\Rightarrow x=5-3`
`\Rightarrow x=2`
`5+(3+x)=10`
`\Rightarrow 3+x=10-5`
`\Rightarrow 3+x=5`
`\Rightarrow x=5-3`
`\Rightarrow x=2`
`(4+x)+1=7`
`\Rightarrow 4+x=7-1`
`\Rightarrow 4+x=6`
`\Rightarrow x=6-4`
`\Rightarrow x=2`
`(x+5)+3=9`
`\Rightarrow x+5=9-3`
`\Rightarrow x+5=6`
`\Rightarrow x=6-5`
`\Rightarrow x=1`
`(x-1)-4=7`
`\Rightarrow x-1=7+4`
`\Rightarrow x-1=11`
`\Rightarrow x=11+1`
`\Rightarrow x=12`
`4-(6-x)=1`
`\Rightarrow 6-x=4-1`
`\Rightarrow 6-x=3`
`\Rightarrow x=6-3`
`\Rightarrow x=3`
\(2+\left(x+3\right)=7\)
\(\Rightarrow2+x+3=7\)
\(\Rightarrow x+5=7\)
\(\Rightarrow x=2\)
\(5+\left(3+x\right)=10\)
\(\Rightarrow5+3+x=10\)
\(\Rightarrow x+8=10\)
\(\Rightarrow x=2\)
\(\left(4+x\right)+1=7\)
\(\Rightarrow4+x+1=7\)
\(\Rightarrow x+5=7\)
\(\Rightarrow x=2\)
\(\left(x+5\right)+3=9\)
\(=x+5+3=9\)
\(\Rightarrow x+8=9\)
\(\Rightarrow x=1\)
\(\left(x-1\right)-4=7\)
\(\Rightarrow x-1-4=7\)
\(\Rightarrow x-5=7\)
\(\Rightarrow x=12\)
\(4-\left(6-x\right)=1\)
\(\Rightarrow4-6-x=1\)
\(\Rightarrow-2-x=1\)
\(\Rightarrow x=-3\)
a, \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
b. \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(Voly\right)\\x=4\end{cases}\Rightarrow x=4}\)
c, \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
d, \(\left(\frac{4}{5}\right)^{5x}=\left(\frac{4}{5}\right)^7\)
\(\Rightarrow5x=7\)
\(\Rightarrow x=\frac{7}{5}\)
e, Ta có: \(A=\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)
Để A ∈ Z <=> (x - 2) ∈ Ư(7) = { ±1; ±7 }
x - 2 | 1 | -1 | 7 | -7 |
x | 3 | 1 | 9 | -5 |
Vậy....
a) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
Vậy : ....
b) \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(loại\right)\\x=4\end{cases}}\)
c) \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
Vậy :...