K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.

28 tháng 2 2021

\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)

Vậy \(\left(x;y\right)=\left(5;-2\right)\)

8 tháng 9 2019

a) -4/5 + 5/2x = -3/10

5/2x = -3/10 + 4/5

5/2x = 1/5

5/2x = 1/2

x = 1/2 : 5/2

x = 1/5

b) 4/3 + 5/8 : x = 1/12

5/8x = 1/12 - 4/3

5/8x = -5/4

5 = -5/4.8x

5 = -10x

5/-10 = x

-1/2 = x

x = -1/2

c) (x - 1/3)(x - 2/5) = 0

x - 1/3 = 0 hoặc x - 2/5 = 0

x = 0 + 1/3         x = 0 + 2/5

x = 1/3               x = 2/5

8 tháng 9 2019

Bạn làm hộ mình bài 2 đc k ạ ?

24 tháng 2 2019

\(x^2-1>x^2-4>x^2-7>x^2-10\)

\(\text{Để }\left(x^2-1\right).\left(x^2-4\right).\left(x^2-7\right).\left(x^2-10\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left(x^2-1\right)>0\\\left(x^2-4\right).\left(x^2-7\right).\left(x^2-10\right)< 0\end{cases}\text{hoặc }\hept{\begin{cases}\left(x^2-1\right).\left(x^2-4\right).\left(x^2-7\right)>0\\\left(x^2-10\right)< 0\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}\text{hoặc }\hept{\begin{cases}x^2>7\\x^2< 10\end{cases}}}\)

\(\Rightarrow x^2=9\Rightarrow x=\pm3\)

5 tháng 6 2020

thằng Boul bốc phét chém gió

23 tháng 4 2016

(x^2-1)(x^2-4)(x^2-7)(x^2-10)<0

=> có 3 thừa số âm, 1 thừa số dương 

dĩ nhiên thừa so dương là thừa số lớn nhất trong biểu thức. vậy x^2-1 lớn nhất. => x^2 - 1 >0 thì x^2 >1

mặt khác, cũng có thể là 3 thừa so dương, 1 thừa số âm

dĩ nhiên thừa số âm là thừa số có giá trị nhỏ nhất trong biểu thức. vậy x^2-10 nhỏ nhất => x^2 - 10 <0 thì x^2 < 10

giới hạn vị trí của x^2, ta được:

10>x^2>1^2

=> x^2= {4;9}

nếu x^2=4 thì x^2-4=0 => biểu thức=0

vậy x^2=9 thì x={3;-3} 

\(1,x.\left(x+7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}}\)

\(2,\left(x+12\right).\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)

\(3,\left(-x+5\right).\left(3-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Rightarrow\orbr{\begin{cases}-x=-5\\x=3\end{cases}\Rightarrow}\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)

\(4,24:\left(3x-2\right)=-3\)

\(3x-2=-8\)

\(3x=-6\)

\(x=-2\)

\(5,-45:5\left(-3-2x\right)=3\)

\(5\left(-3-2x\right)=-15\)

\(-3-2x=-3\)

\(2x=0\)

\(x=0\)

\(6,x.\left(2+x\right)\left(7-x\right)=0\)

\(x=0\) hoặc \(\orbr{\begin{cases}2+x=0\\7-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=7\end{cases}}}\)

\(7,\left(x-1\right)\left(x+2\right)\left(-x+3\right)=0\)

TH1: x-1=0            TH2 : x+2=0                        TH3: -x+3=0 

         x=1                       x=-2                                           -x=-3  => x=3

`@` `\text {Ans}`

`\downarrow`

`2+(x+3)=7`

`\Rightarrow x+3=7-2`

`\Rightarrow x+3=5`

`\Rightarrow x=5-3`

`\Rightarrow x=2`

`5+(3+x)=10`

`\Rightarrow 3+x=10-5`

`\Rightarrow 3+x=5`

`\Rightarrow x=5-3`

`\Rightarrow x=2`

`(4+x)+1=7`

`\Rightarrow 4+x=7-1`

`\Rightarrow 4+x=6`

`\Rightarrow x=6-4`

`\Rightarrow x=2`

`(x+5)+3=9`

`\Rightarrow x+5=9-3`

`\Rightarrow x+5=6`

`\Rightarrow x=6-5`

`\Rightarrow x=1`

`(x-1)-4=7`

`\Rightarrow x-1=7+4`

`\Rightarrow x-1=11`

`\Rightarrow x=11+1`

`\Rightarrow x=12`

`4-(6-x)=1`

`\Rightarrow 6-x=4-1`

`\Rightarrow 6-x=3`

`\Rightarrow x=6-3`

`\Rightarrow x=3`

19 tháng 6 2023

\(2+\left(x+3\right)=7\)

\(\Rightarrow2+x+3=7\)

\(\Rightarrow x+5=7\)

\(\Rightarrow x=2\)

\(5+\left(3+x\right)=10\)

\(\Rightarrow5+3+x=10\)

\(\Rightarrow x+8=10\)

\(\Rightarrow x=2\)

\(\left(4+x\right)+1=7\)

\(\Rightarrow4+x+1=7\)

\(\Rightarrow x+5=7\)

\(\Rightarrow x=2\)

\(\left(x+5\right)+3=9\)

\(=x+5+3=9\)

\(\Rightarrow x+8=9\)

\(\Rightarrow x=1\)

\(\left(x-1\right)-4=7\)

\(\Rightarrow x-1-4=7\)

\(\Rightarrow x-5=7\)

\(\Rightarrow x=12\)

\(4-\left(6-x\right)=1\)

\(\Rightarrow4-6-x=1\)

\(\Rightarrow-2-x=1\)

\(\Rightarrow x=-3\)

6 tháng 9 2019

a, \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)

b. \(\left(x^2+1\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(Voly\right)\\x=4\end{cases}\Rightarrow x=4}\)

c, \(2x^2-\frac{1}{3}x=0\)

\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)

d, \(\left(\frac{4}{5}\right)^{5x}=\left(\frac{4}{5}\right)^7\)

\(\Rightarrow5x=7\)

\(\Rightarrow x=\frac{7}{5}\)

e, Ta có: \(A=\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)

Để A ∈ Z <=> (x - 2) ∈ Ư(7) = { ±1; ±7 }

x - 21-17-7
x319-5

 Vậy....

6 tháng 9 2019

a) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)

Vậy : ....

b) \(\left(x^2+1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(loại\right)\\x=4\end{cases}}\)

c) \(2x^2-\frac{1}{3}x=0\)

\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)

Vậy :...