Cho Tam giác ABC vuông góc tại A. AB=3cm và AC=4cm a) Tính BC b) Trên tia đối của của AB lấy I sao cho AB = AI. Chứng minh tam giác BIC cân c)Vẽ AN thuộc BC. N thuộc BC, AM vuông góc CI, M thuộc CI. Chứng minh tam giác ANC= tam giác AMC d) Chứng minh MN song song với BI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔMAD=ΔNAD
=>AM=AN
b: Xét ΔACB có AM/AB=AN/AC
nên MN//BC
c: Xét ΔADE có
AM vừa là đường cao, vừa là trung tuýen
=>ΔADE cân tại A
=>AD=AE
Xét ΔADF có
AN vừa là đường cao, vừa là trung tuyến
=>ΔADF cân tại A
=>AD=AF
=>AE=AF
=>ΔAEFcân tạiA
https://hoidap247.com/cau-hoi/111101 bạn có thể tham khảo ở đây nha. Chúc bạn học tốt !!!!!!!
nhớ tk cho ming nha
1, Xét tam giác ABC có :
\(BC^2=AC^2+AB^2\)
\(\Leftrightarrow BC^2=4^2+3^2\)
\(\Leftrightarrow BC^2=25\)
\(\Leftrightarrow BC=5\left(cm\right)\)
2,Ta có :\(\widehat{BMA}+\widehat{MBA}=90^O\)
\(\widehat{BMH}+\widehat{MBH}=90^O\)
MÀ \(\widehat{ABM}=\widehat{HBM}\)
Nên \(\widehat{BMA}=\widehat{BMH}\)
Xét tam giác ABM và tam giác HBM có :
\(\widehat{ABM}=\widehat{HBM}\left(gt\right)\)
\(BMchung\)
\(\widehat{BMA}=\widehat{BMH}\)
\(\Rightarrow\Delta BAM=\Delta BHM\left(c.g.c\right)\)
3,Vì \(\Delta BAM=\Delta BHM\Rightarrow AM=MH\left(1\right)\)
Xét \(\Delta HMC\)có :
\(\widehat{MHC}=90^0\)
Suy ra :MC>MH(2)
Từ (1) và(2):AM<MC
4,Ta có :\(\widehat{AMH}+\widehat{HMC}=180^0\left(1\right)\)
Xét tam giác NMA và tam giác CMH có:
\(HC=NA\)
\(\widehat{NAM}=\widehat{CHM}\)
\(MA=MH\left(\Delta BAM=\Delta BHM\right)\)
\(\Rightarrow\Delta NMA=\Delta CMH\left(c.g.c\right)\)
\(\Rightarrow\widehat{NMA}=\widehat{CMH}\)(2)
Từ (1) và(2) : => N,M,H thẳng hàng
a)
Ta có: ΔABC cân tại A(gt)
mà AM là đường phân giác ứng với cạnh đáy BC(gt)
nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)
\(\Leftrightarrow AM\perp BC\)
Xét ΔABC có
AM là đường cao ứng với cạnh BC(cmt)
BK là đường cao ứng với cạnh AC(Gt)
AM cắt BK tại I(Gt)
Do đó: I là trực tâm của ΔBAC(Tính chất ba đường cao của tam giác)
Suy ra: CI\(\perp\)AB(Đpcm)
a) Tam giác ABC cân tại A có AM là phân giác, do đó AM cũng là đường cao
AM vuông góc với BC
Lại có BK vuông góc với AC
Do đó I là trực tâm của tam giác ABC
Vậy CI vuông góc với AB
b) Tam giác BDH = tam giác DBP (ch.gn)
Do đó BH = DP
BDKQ là hình chữ nhật => DP = HK
=> BK = BH + HK = DP + DQ (đpcm)
KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA
A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)
\(CI\perp AD\Rightarrow\widehat{CID}=90^o\)
\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
=> BH // CI (ĐPCM)
B)
XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)
XÉT \(\Delta AHB\)VUÔNG TẠI H
\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)
từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)
XÉT \(\Delta ABH\)VÀ\(\Delta CAI\)CÓ
\(\widehat{H}=\widehat{I}=90^o\)
AB = AC (gt)
\(\widehat{ABH}=\widehat{IAC}\)(CMT)
=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)
=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )
a, xét tam giác AMB và tam giác NMC có :
BM = MC do M là trung điểm của BC (gt)
AM = NM do M là trung điểm của AN (Gt)
góc AMB = góc NMC (đối đỉnh)
=> tam giác AMB = tam giác NMC (c-g-c)
b, tam giác AMB = tam giác NMC (câu a)
=> góc ABM = góc MCN (đn)
c, tam giác AMB = tam giác NMC (câu a)
=> BA = CN (đn) (1)
xét tam giác BAH và tam giác BIH có : BH chung
góc BHA = góc BHI = 90 (gt)
HI = HA (Gt)
=> tam giác BAH = tam giác BIH (2cgv)
=> BI = BA (đn) (2)
(1)(2) => BI = CN
a) Xét ∆ABM và ∆CMN ta có :
AM = MN
BM = MC
AMB = CMN ( đối đỉnh)
=> ∆ABM = ∆CMN (c.g.c)
b) Vì ∆ABM = ∆CMN (cmt)
=> ABM = NCM
Mà 2 góc này ở vị trí so le trong
=> AB //NC
=> DB // NC
Ta có : BDC + DCN = 180° ( kề bù)
=> DCN = 90°
c) Xét ∆ vuông ABH và ∆vuông IHB ta có :
AH = HI
BH chung
=> ∆ABH = ∆IHB ( 2 cạnh góc vuông)
=> BA = BI
Mà AB = CN (cmt)
=> BI = CN ( cùng bằng BA)
a: Xét ΔAMB và ΔANC có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔAMB=ΔANC
Suy ra: AM=AN
b: Xét ΔAIM vuông tại I và ΔAKN vuông tại K có
AM=AN
\(\widehat{IAM}=\widehat{KAN}\)
Do đó: ΔAIN=ΔAKN
Suy ra: AI=AK
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>\(BC=\sqrt{25}=5\left(cm\right)\)
b: Xét ΔCAB vuông tại A và ΔCAI vuông tại A có
CA chung
AB=AI
Do đó: ΔCAB=ΔCAI
=>CB=CI
=>ΔCBI cân tại C
c: Ta có; ΔCAB=ΔCAI
=>\(\widehat{ACB}=\widehat{ACI}\)
Xét ΔCMA vuông tại M và ΔCNA vuông tại N có
CA chung
\(\widehat{MCA}=\widehat{NCA}\)
Do đó: ΔCMA=ΔCNA
d: Ta có: ΔCMA=ΔCNA
=>CM=CN
Xét ΔCIB có \(\dfrac{CM}{CI}=\dfrac{CN}{CB}\)
nên MN//IB