\(\left(10^2+11^2+12^2\right):\left(13^2+14^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{10^2+11^2+12^2}{13^2+14^2}=\dfrac{100+121+144}{169+196}\)
\(=\dfrac{365}{365}=1\)
(102 +112+122):(132 +142)
=(100+121+144):(169+196)
=365:365
=1
\(\left(10^2+11^2+12^2\right):\left(13^2+14^2\right)\)
\(=\left(100+121+144\right):\left(169+196\right)\)
\(=\left(221+144\right):365\)
\(=365:365\)
\(=1\)Vậy kết quả = 1
\(\left(10^2+11^2+12^2\right):\left(13^2+14^2\right)\)
\(=\left(100+121+144\right):\left(169+196\right)\)
\(=365:365\)
\(=1\)
\(a,\dfrac{121.75.130.169}{39.60.11.198}=\dfrac{11.11.25.3.13.10.169}{13.3.6.10.11.11.18}=\dfrac{25.169}{6.18}\)
\(\left(\sqrt{12+2\sqrt{14+2\sqrt{13}}-\sqrt{12+2\sqrt{11}}}\right)\left(\sqrt{11}+\sqrt{3}\right)\)
\(\left(\sqrt{12+2\sqrt{14+2\sqrt{13}}}-\sqrt{12+2\sqrt{11}}\right)\left(\sqrt{11}+\sqrt{13}\right)\)
\(=\left(\sqrt{12+2\sqrt{\left(\sqrt{13+1}\right)^2}}-\sqrt{\left(\sqrt{11+1}\right)^2}\right)\left(\sqrt{11}+\sqrt{13}\right)\)
\(=\left(\sqrt{12+2\sqrt{13+2}}-\sqrt{11}-1\right)\left(\sqrt{11}+\sqrt{13}\right)\)
\(=\left(\sqrt{\left(\sqrt{13}+1\right)^2}-\sqrt{11}-1\right)\left(\sqrt{11}+\sqrt{13}\right)\)
\(=\left(\sqrt{13}+1-\sqrt{11}-1\right)\left(\sqrt{11}+\sqrt{13}\right)\)\(=\left(\sqrt{13}-\sqrt{11}\right)\left(\sqrt{11}+\sqrt{13}\right)=13-11=2\)
\(\left(10^2+11^2+12^2\right):\left(13^2+14^2\right)\)
\(=\left(100+121+144\right):\left(169+196\right)\)
\(=\frac{365}{365}=1\)
(102 + 112 + 122) : (132 + 142)
= (100 + 121 + 144) : (169 + 196)
= 365 : 365
= 1
Ủng hộ mk nha ^_-