Tìm các giá trị nguyên của x để biểu thức P= x+8/x-1 nhận giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow11⋮4x-5\)
Vì \(x\in Z\) nên \(4x-5\in Z\)
\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)
Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).
b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)
Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)
4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)
Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất
\(\Rightarrow4-x=1\Rightarrow x=3\)
\(\Rightarrow A=\dfrac{5}{4-3}=5\)
Vậy MaxA = 5 tại x = 3
c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).
Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)
Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất
\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất
Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\)
x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)
Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất
\(\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)
Vậy MaxB = -6 tại x = 2.
Mình làm sai câu a...
Ta có: \(M=\dfrac{8x+1}{4x-1}=\dfrac{8x-2+3}{4x-1}=\dfrac{2\left(4x-1\right)+3}{4x-1}=2+\dfrac{3}{4x-1}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{3}{4x-1}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{3}{4x-1}\) nhận giá trị nguyên
Vì \(4x-1\in Z\) nên \(4x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{\pm0,5;0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\) thỏa mãn \(x\in Z\).
1 - 2x = -(2x - 1)
= -(2x + 6 - 7)
= -(2x + 6) + 7
= -2(x + 3) + 7
Để B nguyên thì (1 - 2x) ⋮ (x + 3)
⇒ 7 ⋮ (x + 3)
⇒ x + 3 ∈ Ư(7) = {-7; -1; 1; 7}
⇒ x ∈ {-10; -4; -2; 4}
a: ĐKXĐ: x<>-1
b: \(P=\left(1-\dfrac{x+1}{x^2-x+1}\right)\cdot\dfrac{x^2-x+1}{x+1}\)
\(=\dfrac{x^2-x+1-x-1}{x^2-x+1}\cdot\dfrac{x^2-x+1}{x+1}=\dfrac{x^2-2x}{x+1}\)
c: P=2
=>x^2-2x=2x+2
=>x^2-4x-2=0
=>\(x=2\pm\sqrt{6}\)
đk: x #1;
P = 1 + 9/x-1.
Vậy x nguyên để x- 1 là ước của 9
Ư của 9 là: -9; -3; -1; 0; 1; 3 và 9
Từ đó tìm được x
Để A nguyên thì \(3x^3-12x^2+8x^2-32x+33x-132+131⋮x-4\)
\(\Leftrightarrow x-4\in\left\{1;-1;131;-131\right\}\)
hay \(x\in\left\{5;3;135;-127\right\}\)
Để A nguyên thì \(x^2-x+4x-4+9⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(x\in\left\{2;0;4;-2;10;-8\right\}\)
\(A=\dfrac{3x^3-4x^2+x-1}{x-4}=\dfrac{3x^2\left(x-4\right)+8x\left(x-4\right)+33\left(x-4\right)+131}{x-4}=\dfrac{\left(x-4\right)\left(3x^2+8x+33\right)+131}{x-4}=3x^2+8x+33+\dfrac{131}{x-4}\in Z\)
\(\Rightarrow\left(x-4\right)\inƯ\left(131\right)=\left\{-131;-1;1;131\right\}\)
\(\Rightarrow x\in\left\{-127;3;5;135\right\}\)
\(\frac{x+8}{x-1}=\frac{x-1+9}{x-1}=1+\frac{9}{x-1}\)
\(\frac{x+8}{x-1}\in Z\Leftrightarrow\frac{9}{x-1}\in Z\Leftrightarrow x-1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
ta có bảng:
vậy.............