cho hình chóp tứ giác đều S.ABCD có cạnh đáy AB=10cm cạnh bên SA=12cm
a)tính đường chéo AC
b)tính đường cao SO rồi tính thể tích
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AC=\sqrt{10^2+10^2}=10\sqrt{2}\left(cm\right)\)
b: AO=5căn 2(cm)
=>\(SO=\sqrt{SA^2+AO^2}=\sqrt{194}\left(cm\right)\)
a) Áp dụng định lý Pytago, ta được:
AC2=AB2+BC2=2AB2AC2=AB2+BC2=2AB2
⇒AC=AB√2=10√2cm⇒AC=AB2=102cm
b) Gọi MM là trung điểm ABAB
⇒MA=MB=MO=5cm⇒MA=MB=MO=5cm
⇒SM⊥AB⇒SM⊥AB (ΔSAB∆SAB cân tại SS)
⇒SM=√SA2−AM2=√122−52=√119cm⇒SM=SA2−AM2=122−52=119cm
⇒SO=√SM2−OM2=√119−52=√94cm⇒SO=SM2−OM2=119−52=94cm
⇒VS.ABCD=13.SABCD.SO=13.AB2.SO=102.943=94003cm3
a AC=,\(10\sqrt{2}\)cm
bSO=,\(\sqrt{94}\)còn thể tích thì mình chưa học