x^2 - 2(m-2)x + m^2 - 3m + 5=0.
Giải phương trình với m=3
b) Tìm giá trị của m để phương trình có nghiệm No =-4
c) Tìm m để phương trình có nghiệm kép
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Bạn tự giải
b. Pt có nghiệm kép khi:
\(\Delta'=\left(m+1\right)^2-4m=0\Leftrightarrow m^2-2m+1=0\Leftrightarrow m=1\)
Khi đó: \(x_{1,2}=m+1=2\)
c. Do pt có nghiệm bằng 4:
\(\Rightarrow4^2-2\left(m+1\right).4+4m=0\)
\(\Leftrightarrow8-4m=0\Rightarrow m=2\)
\(x_1x_2=4m\Rightarrow x_2=\dfrac{4m}{x_1}=\dfrac{4.2}{4}=2\)
a) Thay \(m=1\) vào phương trình, ta được:
\(x^2+12x-4=0\) \(\Rightarrow\left[{}\begin{matrix}x=-6+2\sqrt{10}\\x=-6-2\sqrt{10}\end{matrix}\right.\)
Vậy ...
b)
+) Với \(m=0\) \(\Rightarrow12x-4=0\) \(\Leftrightarrow x=\dfrac{1}{3}\)
+) Với \(m\ne0\), ta có: \(\Delta'=36+4m\)
Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\) \(\Leftrightarrow m>-9\)
Vậy \(\left\{{}\begin{matrix}m\ne0\\m>-9\end{matrix}\right.\) thì phương trình có 2 nghiệm phân biệt
c) Để phương trình có nghiệm kép \(\Leftrightarrow\Delta'=0\) \(\Leftrightarrow m=-9\)
\(\Rightarrow-9x^2+12x-4=0\) \(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(m=-9\) thì phương trình có nghiệm kép \(x_1=x_2=\dfrac{2}{3}\)
d) Để phương trình vô nghiệm \(\Leftrightarrow\Delta'< 0\) \(\Leftrightarrow m< -9\)
Vậy \(m< -9\) thì phương trình vô nghiệm
1.
xét delta có
25 -4(-m-3)
= 25 + 4m + 12
= 4m + 37
để phương trình có nghiệm kép thì delta = 0
=> 4m + 37 = 0 => m = \(\dfrac{-37}{4}\)
2.
a) xét delta
25 - 4(m-3) = 25 - 4m + 12 = -4m + 37
để phương trình có nghiệm kép thì delta = 0
=> -4m + 37 = 0
=> m = \(\dfrac{37}{4}\)
b)
xét delta
25 - 4(m-3) = 25 - 4m + 12 = -4m + 37
để phương trình có 2 nghiệm phân biệt thì delta > 0
=> -4m + 37 > 0
=> m < \(\dfrac{37}{4}\)
x2 - 2( 3m + 2 )x + 2m2 + 3m + 5 = 0
Để phương trình có nghiệm kép thì Δ = 0
=> [ -2( 3m + 2 ) ]2 - 4( 2m2 + 3m + 5 ) = 0
<=> 4( 3m + 2 )2 - 8m2 - 12m - 20 = 0
<=> 4( 9m2 + 12m + 4 ) - 8m2 - 12m - 20 = 0
<=> 36m2 + 48m + 16 - 8m2 - 12m - 20 = 0
<=> 28m2 + 36m - 4 = 0
<=> 7m2 + 9m - 1 = 0 (*)
Δ = b2 - 4ac = 92 - 4.7.(-1) = 81 + 28 = 109
Δ > 0 nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}m_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{-9+\sqrt{109}}{14}\\m_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{-9-\sqrt{109}}{14}\end{cases}}\)
Vậy với \(m=\frac{-9\pm\sqrt{109}}{14}\)thì phương trình có nghiệm kép
Ta có:
\(\Delta^'=\left(3m+2\right)^2-\left(2m^2+3m+5\right)\)
\(=9m^2+12m+4-2m^2-3m-5\)
\(=7m^2+9m-1\)
Để PT có nghiệm kép thì \(\Delta^'=0\)
\(\Leftrightarrow7m^2+9m-1=0\)
\(\Delta_m=9^2-4\cdot7\cdot\left(-1\right)=109\)
\(\Rightarrow m=\frac{-9\pm\sqrt{109}}{14}\)
Vậy khi \(m=\frac{-9\pm\sqrt{109}}{14}\) thì PT có nghiệm kép
a, Thay m = -1 vào phương trình trên ta được
\(x^2+4x-5=0\)
Ta có : \(\Delta=16+20=36\)
\(x_1=\frac{-4-6}{2}=-5;x_2=\frac{-4+6}{2}=1\)
Vậy với m = -1 thì x = -5 ; x = 1
b, Vì x = 2 là nghiệm của phương trình trên nên thay x = 2 vào phương trình trên ta được :
\(4+8+3m-2=0\Leftrightarrow3m=-10\Leftrightarrow m=-\frac{10}{3}\)
Vậy với x = 2 thì m = -10/3
c, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay
\(16-4\left(3m-2\right)=16-12m+8=4m+8>0\)
\(\Leftrightarrow8>-4m\Leftrightarrow m>-2\)
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-4\\x_1x_2=\frac{c}{a}=3m-2\end{cases}}\)
\(\Leftrightarrow x_1+x_2=-4\Leftrightarrow x_1=-4-x_2\)(1)
suy ra : \(-4-x_2+2x_2=1\Leftrightarrow-4+x_2=1\Leftrightarrow x_2=5\)
Thay vào (1) ta được : \(x_1=-4-5=-9\)
Mà \(x_1x_2=3m-2\Rightarrow3m-2=-45\Leftrightarrow3m=-43\Leftrightarrow m=-\frac{43}{3}\)
Phương trình m x 2 – 2(m – 1)x + 2 = 0 có nghiệm kép khi và chỉ khi m ≠ 0 và Δ = 0
Ta có: ∆ = - 2 m - 1 2 – 4.m.2 = 4( m 2 – 2m + 1) – 8m
= 4( m 2 – 4m + 1)
∆ = 0 ⇔ 4( m 2 – 4m + 1) = 0 ⇔ m 2 – 4m + 1 = 0
Giải phương trình m 2 – 4m + 1 = 0. Ta có:
∆ m = - 4 2 – 4.1.1 = 16 – 4 = 12 > 0
Vậy với m = 2 + 3 hoặc m = 2 - 3 thì phương trình đã cho có nghiệm kép.
1: \(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-m+1\right)\)
=1+4m-4
=4m-3
Để phương trình có nghiệm kép thì 4m-3=0
hay m=3/4
Thay m=3/4 vào pt, ta được: \(x^2-x+\dfrac{1}{4}=0\)
hay x=1/2
2: Để phương trình có hai nghiệm thì 4m-3>=0
hay m>=3/4
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2x_1+x_2=5\\x_1+x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=4\\x_2=-3\end{matrix}\right.\)
Theo đề, ta có: \(x_1x_2=-m+1\)
=>1-m=-12
hay m=13
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )