Cho ABC vuông tại A. Có góc B = 60 độ và AB = 3cm,
AC = 4cm. Tia phân giác của góc B cắt AC ở D. Kẻ DE vuông góc với BC (E thuộc BC).
Tính độ dài cạnh BC
Chứng minh:
Kéo dài DE cắt AB tại H. Chứng minh là tam giác đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=4^2+3^2=25\)
=>BC=5(cm)
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔBAD=ΔBED
c: Sửa đề: ΔBHC đều
Ta có: ΔBAD=ΔBED
=>BA=BE
Xét ΔBEH vuông tại E và ΔBAC vuông tại A có
BE=BA
\(\widehat{EBH}\) chung
Do đó: ΔBEH=ΔBAC
=>BH=BC
Xét ΔBHC có BH=BC và \(\widehat{HBC}=60^0\)
nên ΔBHC đều
a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD
Suy ra góc ABD = góc EBD
Vậy tam giác ABD = tam giác EBD
b) Ta có: AB=EB ( tam giác ABD = tam giác EBD )
Suy ra tam giác ABE cân tại B
Tam giác ABE cân tại B có góc EBA =60 độ
Suy ra tam giác ABE là tam giác đều
c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ
Suy ra ACB = 30 độ
Suy ra tam giác ABC là nửa tam giác đều
Suy ra AB = 1/2 BC
Suy ra BC = 2AB = 2 . 5 = 10 cm
chúc bạn học tốt!
a) Xét \(\Delta ABC\)có AB = 5cm; AC = 12cm. Theo định lý Py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=5^2+12^2\)
\(BC^2=25+144\)
\(BC^2=169\)
\(BC=13\)
Vậy cạnh BC = 13cm
b)Xét tam giác AHD và tam giác AKD ta có:
\(\widehat{AHD}=\widehat{AKD}=90^o\)
AD chung
\(\widehat{DAH}=\widehat{DAK}\)(AD là tia phân giác)
=> tam giác AHD = tam giác AKD (g.c.g)
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=4^2+3^2=25\)
=>BC=5(cm)
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó:ΔBAD=ΔBED
c: Sửa đề: ΔBHC đều
Ta có: ΔBAD=ΔBED
=>BA=BE
Xét ΔBEH vuông tại E và ΔBAC vuông tại A có
BE=BA
\(\widehat{EBH}\) chung
Do đó: ΔBEH=ΔBAC
=>BH=BC
Xét ΔBHC có BH=BC và \(\widehat{HBC}=60^0\)
nên ΔBHC đều