Tìm số tự nhiên k để các biểu thức sau là số chính phương
a. 2k + 24 + 27
b 28 + 211 + 2k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Quy luật : Bằng số liền trước + 3
b)________________________+ 3
c)________________________ + 4
c) Đặt \(n^2+81=a^2\)
\(\Rightarrow81=a^2-n^2\)
\(\Rightarrow81=\left(a-n\right)\left(a+n\right)\)
Vì \(n\in N\Rightarrow a-n\in N;a+n\in N\)
\(\Rightarrow\left(a-n\right)
c, Đặt n2 + 81= k2
=> 81 = k2 - n2
=> 81 = (k2+kn) - (kn+n2)
=> 81 = k(k+n) - n(k+n)
=> 81 = (k-n).(k+n) (1)
Vì k-n và k+n là 2 số chẵn liên tiếp (2)
mà 81 là số lẻ (3)
Từ (1),(2) và (3) => vô lý
Vậy k tồn tại n thuộc N để bt là SCP
mk chỉ bk làm câu này thôi!
- Với \(m=0\Rightarrow x=-2\) thỏa mãn
- Với \(m\ne0\)
\(\Delta'=\left(m-1\right)^2-m\left(m-4\right)=2m+1\)
Pt có nghiệm hữu tỉ khi và chỉ khi \(2m+1\) là số chính phương
Mà \(2m+1\) lẻ \(\Rightarrow2m+1\) là SCP lẻ
\(\Rightarrow2m+1=\left(2k+1\right)^2\) với \(k\in N\)
\(\Rightarrow m=2k\left(k+1\right)\)
Vậy với \(m=2k\left(k+1\right)\) (với \(k\in N\)) thì pt có nghiệm hữu tỉ
a./ k = 8
b./ k = 12