cho a/b=c/d chứng minh rang a) a/b = a+c/b+d
b) a+b/c+d = a-b/c-d
c) a^2/b^2 = ac/bd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
Vậy ta có đpcm
b)Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)
Vậy ta có đpcm
c) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)
=>\(\frac{a^2}{b^2}=\frac{\left(bk\right)^2}{b^2}=\frac{b^2k^2}{b^2}=k^2\) (1)
Mặt khác:\(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\) (2)
Từ (1) và (2) => \(\frac{a^2}{b^2}=\frac{ac}{bd}\left(đpcm\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
a) \(VT=\frac{a}{a+c}=\frac{kb}{kb+kd}=\frac{kb}{k\left(b+d\right)}=\frac{b}{b+d}=VP\)
=> đpcm
b) \(VT=\frac{a^2+c^2}{b^2+d^2}=\frac{\left(kb\right)^2+\left(kd\right)^2}{b^2+d^2}=\frac{k^2b^2+k^2d^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)(1)
\(VP=\frac{ac}{bd}=\frac{kb\cdot kd}{bd}=\frac{k^2bd}{bd}=k^2\)(2)
Từ (1) và (2) => VT = VP => đpcm
a) Vì BC=2 AB
Mà E là trung điểm của BC
=> AB= BE = EC
Xét ΔABD và ΔEBD có:
AB=BE (cmt)
góc A1 = góc A2(gt)
BD: cạnh chung
=> ΔABD=ΔEBD (c.g.c)
=> góc ADB= góc EDB
=> DB là tia pg của góc ADE
b) VÌ ΔABD=ΔEBD( cmt)
=> góc BAD= góc BED=90
Mà : góc DEB + góc DEC=180
=> góc DEB= góc DEC
Xét ΔDEB và ΔDEC có:
DE:cạnh chung
góc DEB = góc DEC(cmt)
BE=CE(gt)
=> ΔDEB=ΔDEC(c.g.c)
=> BD=DC
c) Vì ΔDEB=ΔDEC(cmt)
=> góc B2= góc C
Mà: góc B+ góc C=90
<=> 2 B2+ góc C=90
<=> 3 góc B2=90
<=> B2=30
Vậy: góc C=góc B2=30; góc B= 2.B2=2.30=60
b) \(ad=bc\)
\(\Rightarrow ac-ad+bc-bd=ac-bc+ad-bd\)
\(\Rightarrow a.\left(c-d\right)+b.\left(c-d\right)=c.\left(a-b\right)+d.\left(a-b\right)\)
\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
ai giai gium minh ma cinh xac nhat minh cho