Ngày thứ nhất hai tổ công nhân của một nhà máy sản xuất được 1500 chiếc khẩu trang. Để đáp ứng nhu cầu khẩu trang trong dịch cúm do chủng mới gây ra nên ngày thứ hai tổ 1 vượt mức 35%, tổ 2 vượt mức 40% so với ngày thứ nhất. Vì vậy hai tổ đã sản xuất được 2065 chiếc. Hỏi ngày thứ nhất mỗi tổ sản xuất được bao nhiêu chiếc khẩu trang?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi sản phẩm tổ khẩu trang ngày thứ nhất 2 tổ lần lượt là a ; b ( a ; b > 0 )
Theo bài ra ta có hệ \(\left\{{}\begin{matrix}a+b=1500\\\dfrac{35a}{100}+\dfrac{40b}{100}=565\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=700\\b=800\end{matrix}\right.\)(tm)
Vậy ngày 2 tổ 1 sản xuất được \(\dfrac{35.700}{100}+700=245+700=945sp\)
tổ 2 sản xuất được \(\dfrac{40.800}{100}+800=320+800=1120sp\)
gọi số khẩu trang được giao của tổ 1 , tổ 2 được giao lần lượt là x,y(chiếc)(0<x,y<3200)
theo kế hoạch số khẩu trang cần làm \(x+y=3200\)(chiếc)
thực tế vượt mức 2 tổ làm được: \(118\%x+121\%y=3800\)(chiếc)
=>hệ pt: \(\left\{{}\begin{matrix}x+y=3200\\118\%x+121\%y=3800\end{matrix}\right.=>\left\{{}\begin{matrix}x=2400\left(tm\right)\\y=800\left(tm\right)\end{matrix}\right.\)
Gọi số hộp khẩu trang tổ 1 và tổ 2 được giao theo kế hoạch lần lượt là x,y
Theo đề, ta có:
x+y=1250 và 1,2x+1,05y=1250+190=1440
=>x=850 và y=400
Gọi chi tiết máy sản xuất của tổ 1 trong tháng đầu là x (\(x<800\); \(x\in\mathbb N^*\))
Gọi chi tiết máy sản xuất của tổ 2 trong tháng đầu là y (\(y<800\); \(y\in\mathbb N^*\))
Vì tổng 2 tổ sản xuất được 800 chi tiết máy nên ta có pt: \(x+y=800\) (1)
Vì trong tháng thứ hai cả 2 tổ sản xuất được 945 chi tiết máy:
\(\Rightarrow\left(x+15\%x\right)+\left(y+20\%y\right)=945\)
\(\Leftrightarrow1,15x+1,2y=945\) (2)
Từ (1) và (2) ta được hpt:
\(\left\{{}\begin{matrix}x+y=800\\1,15x+1,2y=945\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=300\\y=500\end{matrix}\right.\) (TMĐK)
Vậy tổ 1 sản xuất được 300 chi tiết máy.
tổ 2 sản xuất được 500 chi tiết máy.
Gọi số chiếc khẩu trang theo kế hoạch mà mỗi ngày tổ phải may là: `x` (chiếc)
`ĐK: x \in N`*
Trên thực tế tổ đã may mỗi ngày số chiếc là: `x+30` (chiếc)
Thời gian thực tế mà tổ làm xong là: `[2600]/x -1` (ngày)
Vù tổ không những làm xong trược `1` ngày mà còn may thêm được `10` chiếc nên ta có:
`(x+30)(2600/x -1)=2600+10`
`<=>2600-x+78000/x -30=2610`
`<=>x^2+40x-78000=0`
`<=>x^2-260x+300x-78000=0`
`<=>(x-260)(x+300)=0`
`<=>[(x=260(t//m)),(x=-300(ko t//m)):}`
Vậy theo kế hoặc mỗi ngày tổ phải may `260` chiếc khẩu trang
Gọi x là chi tiết máy tổ l làm được,(800-x) là chi tiết máy tổ ll làm được ta có:
x+15%x+(800-x)+(800-x).20%=945
x+15%x+800-x+16000%-20%x=945
-5%+800+160=945
-5%x=-15
x=(-15):(-5%)=300
Vậy tổ l làm được 300 chi tiết máy, tổ ll làm được 500 chi tiết máy.
Gọi x là số chi tiết máy tổ I làm được, (800-x) là số chi tiết máy tổ II làm được ta có:
x + 15%x + (800 - x) + (800 - x).20% = 945
x + 15%x + 800 - x + 16000% - 20%x = 945
-5%x + 800 + 160 = 945
-5%x = -15
x = -15: (-5%) = 300
vậy tổ I làm được 300 chi tiết máy, tổ II làm được 500 chi tiết máy
Gọi số khẩu trang ngày thứ nhất tổ 1 sản xuất được là x(cái), tổ 2 sản xuất được là y(cái)
(Điều kiện: \(x,y\in Z^+\))
Tổng số khẩu trang ngày thứ hai hai tổ sản xuất được là 1500 cái nên x+y=1500(1)
Số khẩu trang ngày thứ hai tổ 1 sản xuất được là:
\(x\left(1+35\%\right)=1,35x\left(cái\right)\)
Số khẩu trang ngày thứ hai tổ 2 sản xuất được là:
\(y\left(1+40\%\right)=1,4y\left(cái\right)\)
Ngày thứ hai hai tổ sản xuất được 2065 cái nên 1,35x+1,4y=2065(2)
Từ (1),(2) ta có hệ:
\(\left\{{}\begin{matrix}x+y=1500\\1,35x+1,4y=2065\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}1,35x+1,35y=2025\\1,35x+1,4y=2065\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-0,05y=-40\\x+y=1500\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=800\\x=700\end{matrix}\right.\left(nhận\right)\)
Vậy: Trong ngày 1, tổ 1 sản xuất được 700 cái khẩu trang, tổ 2 sản xuất được 800 cái khẩu trang