K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

Áp dụng tính chất dãy tỉ số bằn nhau ta có

\(\frac{2x}{3y}=\frac{-1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}=\frac{-2x+3y}{1+3}=\frac{7}{4}\)

Do đó

\(\frac{2x}{-1}=\frac{7}{4}\Rightarrow x=\frac{-7}{4}.\frac{1}{2}=\frac{-7}{8}\)

\(\frac{3y}{3}=\frac{7}{4}\Rightarrow y=\frac{7}{4}.3.\frac{1}{3}=\frac{7}{4}\)

16 tháng 7 2016

Do 2x/3y = -1/3

=> 2x.3 = -1.3y

=> 2x = -y

=> -2x = y

Ta có: -2x + 3y = 7

=> y + 3y = 7

=> 4y = 7

=> y = 7/4

=> x = -7/4 : 2 = -7/8

Nhân chéo là ra thui ak

6 tháng 7 2018

a )  

Ta có : 

\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)

và \(x+y-z=69\)

ADTCDTSBN , ta có : 

\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)

Vậy ...

b )  

Ta có : 

\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)

\(\Rightarrow x=14,4.3:2=21,6\)

và \(3x+5y-7z=30\)

Thay vào làm tiếp : 

c ) 

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)

\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)

\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)

\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN ) 

\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)

\(=\frac{50-34}{8}=\frac{16}{8}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)

Vậy ...

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)

Do đó: x-1=10; y-2=15; z-3=20

=>x=11; y=17; z=23

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)

Trường hợp 1: 2x-3y+5z=-1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)

Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5

Trường hợp 2: 2x-3y+5z=1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)

Do đó: x=15/70=3/14; y=1/7; z=1/5

15 tháng 7 2016

1.  x+1 =2x

x =1

xem họ nhà hứa có đúng k

5 tháng 8 2016

dễ mà 2/5 =6/7 em ak =)

7 tháng 8 2016

cảm ơn nha

23 tháng 7 2017

\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{2x}{2.3}=\frac{5y}{5.2}=\frac{2x}{6}=\frac{5y}{10}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

 \(\frac{2x}{6}=\frac{5y}{10}=\frac{2x+5y}{6+10}\)\(=\frac{32}{16}=2\)

\(\frac{2x}{6}=2\Rightarrow2x=12\Rightarrow x=6\)

\(\frac{5y}{10}=2\Rightarrow5y=20\Rightarrow y=4\)

Vậy ..

23 tháng 7 2017

ta có: x/3 =y/2 => 2x/6 = 5y/10

áp dụng tính chất dãy tỉ số bằng nhau ta có:

 2x/6 = 5y/10 = 2x + 5y/ 6 + 10 = 32/16 = 2

=> x = 3 . 2 = 6 ; y = 2 . 2 = 4

vậy ( x , y ) = ( 6 ; 4 ) 

 
5 tháng 8 2018

ta có: \(\frac{x-1}{2}\)=\(\frac{2x-2}{4}\)

\(\frac{y-2}{3}\)=\(\frac{3y-6}{9}\)

áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}=\frac{2x+3y-z-5}{9}=5\)

vậy x=11;y=17;z=23

27 tháng 10 2016

Ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)

\(=\frac{\left(2x+3y-z\right)-5}{9}=\frac{50-5}{9}=\frac{45}{9}=5\)

\(\Rightarrow\begin{cases}x-1=2.5=10\\y-2=3.5=15\\z-3=4.5=20\end{cases}\)\(\Rightarrow\begin{cases}x=11\\y=17\\z=23\end{cases}\)

Vậy x = 11; y = 17; z = 23

27 tháng 10 2016

mk cám ơn bn nhìu ^^

23 tháng 3 2017

Không có điều kiện j của x, y ak bn batngo

23 tháng 3 2017

Không đúng

theo mk nghĩ là bài này áp dụng dãy tỉ số = nhau