Cho:x+y+z=0;xy+yz+zx=0.Cmr:x=y=z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem bài này nhé! http://olm.vn/hoi-dap/question/602769.html
Ta có
\(\left(x^2+y^2+z^2\right)^2-2\left(x^4+y^4+z^4\right)\)
\(=2x^2y^2+2y^2z^2+2z^2x^2-x^4-y^4-z^4\)
\(=\left(z^2x^2+2z^2xy+z^2y^2\right)+\left(z^2x^2-2z^2xy+z^2y^2\right)+\left(-x^4+2x^2y^2-y^4\right)-z^4\)
\(=z^2\left(x+y\right)^2+z^2\left(x-y\right)^2-\left(x^2-y^2\right)^2-z^4\)
\(=z^2\left(\left(x+y\right)^2-z^2\right)-\left(x-y\right)^2\left(\left(x+y\right)^2-z^2\right)\)
\(=\left(\left(x+y\right)^2-z^2\right)\left(z^2-\left(x-y\right)^2\right)\)
\(=\left(x+y+z\right)\left(x+y-z\right)\left(z-x+y\right)\left(z+x-y\right)=0\)
Vậy \(\left(x^2+y^2+z^2\right)^2=2\left(x^4+y^4+z^4\right)\)
đây,đố ai đấy,ai lm đc thích l i k e 1 năm tao cx l i k e người đó
\(\left(x+y+z\right)^2=x^2+y^2+z^2\\ \Leftrightarrow xy+yz+xz=0\\ \Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Đặt
\(\dfrac{1}{x}=a;\dfrac{1}{y}=b;\dfrac{1}{z}=c\\ vìa+b+c=0\\ \Rightarrow a^3+b^3+c^3=3abc\\ \Rightarrow\left(\dfrac{1}{x}\right)^3+\left(\dfrac{1}{y}\right)^3+\left(\dfrac{1}{z}\right)^3=\dfrac{3}{xyz}\)
a^3+b^3+c^3=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)+3abc. Cm cái này r ms đc áp dụng
Ta có : \(x+y+z=0\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\Leftrightarrow x^2+y^2+z^2=0\) (Vì xy+yz+zx = 0)
Vì \(x^2\ge0;y^2\ge0;z^2\ge0\Rightarrow x^2+y^2+z^2=0\Leftrightarrow x^2=y^2=z^2=0\Leftrightarrow x=y=z=0\)