K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có S ABCD = \(\frac{AH\left(AB+CD\right)}{2}\)

\(=\frac{a\left(AB+CD\right)}{2}\)

\(=\frac{a}{2}.AB+CD\)

18 tháng 9 2016

A B C D H E  Cho hình thang cân ABCD (AB//CD) có 2 đường chéo vuông góc. Biết đường cao AH=h. Tính tổng 2 đáy (chỉ em cách vẽ nữa ạ) 
*Cách vẽ: 
nhận xét : Thang cân => 2 đường chéo bằng nhau. Gọi O là giao của 2 đường chéo, 
hai đường chéo vuông góc => tam giác OCD vuông cân đỉnh O 
vẽ: vẽ tam giác vuông cân COD , trên tia đối của tia OC lấy A , trên tia đối của tia 
OD lấy B sao cho OA = OB (< OC nếu AB là đáy nhỏ) => ABCD là thang cân đáy nhỏ AB, dáy lớn CD và có 2 đường chéo vuông góc 
*Tính AB + CD: 
Từ A và B hạ AH và BK vuông góc CD , H,K thuộc CD . D0 ABCD là thang cân đáy AB, CD 
=> DH = CK và AB = HK => AB + CD = AB + DH + HK+KC = HK + CK + HK+KC =2HC 
tam giác OCD vuông cân đỉnh O => góc OCD =45 độ => góc ACD =45 độ 
lại có tam giác AHC vuông tại H, góc ACD =45 độ => vuông cân => HC = AH = h 
=> tổng 2 đáy AB + CD = 2h 

có onl nà

mà ko thèm nt lun

nhớ lém oy nek

19 tháng 9 2016

nhận xét : Thang cân => 2 đường chéo bằng nhau. Gọi O là giao của 2 đường chéo, 
hai đường chéo vuông góc => tam giác OCD vuông cân đỉnh O 
vẽ: vẽ tam giác vuông cân COD , trên tia đối của tia OC lấy A , trên tia đối của tia 
OD lấy B sao cho OA = OB (< OC nếu AB là đáy nhỏ) => ABCD là thang cân đáy nhỏ AB, dáy lớn CD và có 2 đường chéo vuông góc 
*Tính AB + CD: 
Từ A và B hạ AH và BK vuông góc CD , H,K thuộc CD . D0 ABCD là thang cân đáy AB, CD 
=> DH = CK và AB = HK => AB + CD = AB + DH + HK+KC = HK + CK + HK+KC =2HC 
tam giác OCD vuông cân đỉnh O => góc OCD =45 độ => góc ACD =45 độ 
lại có tam giác AHC vuông tại H, góc ACD =45 độ => vuông cân => HC = AH = h 
=> tổng 2 đáy AB + CD = 2h 

19 tháng 9 2016

bài này ở trên mạng đúng k z

19 tháng 9 2016

kẻ AE//BD , AE giao CD = E

=> AE= BD ( theo nhận xét ) 

=> AB = ED ( theo nhận xét 2 )

ABCD là hình thang cân 

=> AC = BD ( t/c hình thang cân ) 

mà AE = BD ( cmt )  

=> AE = AC=> tg AEC cân ở AAH đường cao đồng thời là đường trung tuyến => HE = HCGọi AC giao BD tại O     AE//BD ( gt )=> góc EAC = góc DOC = 90 độ ( đồng vị )=> tg AEC vuông cân= > AH = \(\frac{EC}{2}\) ( vì trong cùng một tam giác vuông cân đường trung tuyến bằng nửa cạnh huyền )=> 2AH = EC = 2hmà EC = ED+ DC      ED= AB ( cmt )=> AB + DC = 2h ( đpcm )
19 tháng 9 2016

cau hoi cua đỗ thị lan anh do

 Nguyễn Thị Huyền

Bài 1 : Vì hình thang ABCD cân 

=> AD = BC 

=> ADC = BCD 

=> AC = BD 

Xét ∆ACD và ∆BDC ta có : 

AD = BC 

ADC = BCD 

AC = BD

=> ∆ACD = ∆BDC (c.g.c)

=> DAC = CBD 

Mà DAB = CBA ( hình thang ABCD cân )

=> OAB = OBA 

=> ∆ OAB cân 

Mà DOC = AOB = 60° 

=> ∆OAB đều ( trong ∆ cân có 1 góc = 60° thì ∆ đó là ∆ đều ) 

=> AB = BO = AO (1)

Xét ∆ ABC và ∆BAD ta có : 

DAB = ABC ( cmt)

AB chung 

AD = BC 

=> ∆ ABC = ∆BAD(c.g.c)

=> ACB = ADB 

Mà ADC = BCD (cmt)

=> ODC = OCD 

=> ∆ODC cân tại O

Mà DOC = 60° 

=> ∆ODC đều 

=> OD = OC = DC (2)

Từ (1) và (2) 

Bạn tự cộng các cạnh vào với nhau nhé

Bài 2) Kẻ BK vuông góc với CD 

Xét ∆ vuông ADH và ∆ vuông BCK ta có : 

AD = BC 

ADC = BCD

=> ∆ADH = BCK ( ch - gn)

=> AH = BK 

=> DH = CK

Ta có AH vuông góc với DC 

BK vuông góc với CD 

=> AH //BK

Xét ∆ABK và ∆AHK ta có : 

AH = BK(cmt)

AK chung 

HAK = AKB ( so le trong) 

=> ∆ABK = ∆AHK (c.g.c)

=> HK = AB 

Ta có : CD = DH + HK + KC 

=> DH + CK = CD - HK 

Mà HK = AB (cmt)

=> DH + CK = CD - AB 

Vì DH = CK 

Mà 2DH = CD - AB 

=> DH = ( CD - AB )/2 

=> 2CK = CD - AB 

=> CK = ( CD- AB)/2 

=> DH = (CD - AB)/2 (dpcm)

GIÚP ÌNH!!! MÌNH CẦN GẤP!!!CÓ NHIỀU CÂU BẠN NÀO BIẾT BÀI NÀO THÌ GIẢI GIÚP MÌNH1. Tình tổng 4 góc ngoài tại 4 đỉnh của 1 tứ giác.2.Cho tứ giác ABCD có CB-CD, đường chéo BD là phân giác góc ADC. CM ABCD là hình thang.3.Cho hình thang ABCD có góc A= góc D= 90 độ và AB=AD=3cm, DC=6cm. TÍnh các góc còn lại của hình thang.4.Hình thang ABCD (AB//CD) có góc B trừ góc C = 24 độ, góc A = 1.5 goscD. Tính các góc hình...
Đọc tiếp

GIÚP ÌNH!!! MÌNH CẦN GẤP!!!CÓ NHIỀU CÂU BẠN NÀO BIẾT BÀI NÀO THÌ GIẢI GIÚP MÌNH

1. Tình tổng 4 góc ngoài tại 4 đỉnh của 1 tứ giác.

2.Cho tứ giác ABCD có CB-CD, đường chéo BD là phân giác góc ADC. CM ABCD là hình thang.

3.Cho hình thang ABCD có góc A= góc D= 90 độ và AB=AD=3cm, DC=6cm. TÍnh các góc còn lại của hình thang.

4.Hình thang ABCD (AB//CD) có góc B trừ góc C = 24 độ, góc A = 1.5 goscD. Tính các góc hình thang.

5.Cho tam giac ABC vuông cân tại A. Trên nửa mặt phae=ửng bờ BC không chứa A, vẽ BD vuông góc BC và BD=BC.

a) tứ giác ABCD là hình gì?

b) Biết AB=5 cm, tính CD

6. Hình thang cân ABCD (AB//CD), AB nhỏ hơn CD. KẺ 2 đường cao AH, BK.

a) Chứng minh =KC.

b)Biết AB=6cm, CD=15cm. Tính HD và CK.

7.Tính chiều cao của hình thang cân biết cạnh bên BC=25cm, các cạnh đáy AB=10cm, CD=24cm.

2
8 tháng 6 2018

Câu 1: 

Gọi mỗi đinh của tứ giác là A, B, C, D. Các góc ngoài tương ứng lần lượt là A1, B1, C1,  D1

Ta có: A+ B+ C+ D+ A1+ B1+ C1+ D1= 720 độ

Ma A+ B+ C+ D= 360 độ nên A1+ B1+ C1+ D1= 720 - 360= 360 độ

8 tháng 6 2018

720 - 360 = 360 độ

GIÚP ÌNH!!! MÌNH CẦN GẤP!!!CÓ NHIỀU CÂU BẠN NÀO BIẾT BÀI NÀO THÌ GIẢI GIÚP MÌNH1. Tình tổng 4 góc ngoài tại 4 đỉnh của 1 tứ giác.2.Cho tứ giác ABCD có CB-CD, đường chéo BD là phân giác góc ADC. CM ABCD là hình thang.3.Cho hình thang ABCD có góc A= góc D= 90 độ và AB=AD=3cm, DC=6cm. TÍnh các góc còn lại của hình thang.4.Hình thang ABCD (AB//CD) có góc B trừ góc C = 24 độ, góc A = 1.5 goscD. Tính các góc hình...
Đọc tiếp

GIÚP ÌNH!!! MÌNH CẦN GẤP!!!CÓ NHIỀU CÂU BẠN NÀO BIẾT BÀI NÀO THÌ GIẢI GIÚP MÌNH

1. Tình tổng 4 góc ngoài tại 4 đỉnh của 1 tứ giác.

2.Cho tứ giác ABCD có CB-CD, đường chéo BD là phân giác góc ADC. CM ABCD là hình thang.

3.Cho hình thang ABCD có góc A= góc D= 90 độ và AB=AD=3cm, DC=6cm. TÍnh các góc còn lại của hình thang.

4.Hình thang ABCD (AB//CD) có góc B trừ góc C = 24 độ, góc A = 1.5 goscD. Tính các góc hình thang.

5.Cho tam giac ABC vuông cân tại A. Trên nửa mặt phae=ửng bờ BC không chứa A, vẽ BD vuông góc BC và BD=BC.

a) tứ giác ABCD là hình gì?

b) Biết AB=5 cm, tính CD

6. Hình thang cân ABCD (AB//CD), AB nhỏ hơn CD. KẺ 2 đường cao AH, BK.

a) Chứng minh =KC.

b)Biết AB=6cm, CD=15cm. Tính HD và CK.

7.Tính chiều cao của hình thang cân biết cạnh bên BC=25cm, các cạnh đáy AB=10cm, CD=24cm.

 

 

0
DD
8 tháng 7 2021

Câu 11.12. 

Kẻ đường cao \(AH,BK\).

Do tam giác \(\Delta AHD=\Delta BKC\left(ch-gn\right)\)nên \(DH=BK\).

Đặt \(AB=AH=x\left(cm\right),x>0\).

Suy ra \(DH=\frac{10-x}{2}\left(cm\right)\)

Xét tam giác \(AHD\)vuông tại \(H\):

\(AD^2=AH^2+HD^2=x^2+\left(\frac{10-x}{2}\right)^2\)(định lí Pythagore) 

Xét tam giác \(DAC\)vuông tại \(A\)đường cao \(AH\):

\(AD^2=DH.DC=10.\left(\frac{10-x}{2}\right)\)

Suy ra \(x^2+\left(\frac{10-x}{2}\right)^2=10.\frac{10-x}{2}\)

\(\Leftrightarrow x=2\sqrt{5}\)(vì \(x>0\))

Vậy đường cao của hình thang là \(2\sqrt{5}cm\).

DD
8 tháng 7 2021

Câu 11.11. 

Kẻ \(AE\perp AC,E\in CD\).

Khi đó \(AE//BD,AB//DE\)nên \(ABDE\)là hình bình hành. 

Suy ra \(AE=BD=15\left(cm\right)\).

Kẻ đường cao \(AH\perp CD\)suy ra \(AH=12\left(cm\right)\).

Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AH\)

\(\frac{1}{AH^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AE^2}=\frac{1}{12^2}-\frac{1}{15^2}=\frac{1}{400}\)

\(\Rightarrow AC=20\left(cm\right)\)

\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.15.20=150\left(cm^2\right)\),