các bạn ơi giúp mih giải bài toán này nhe!
vẽ tam giác ABC có góc B lớn hơn góc C và đường P/G AD . Gỉa sử góc B băngf 80đ, góc ADC bằng 80đ. Tính góc BAD,BAC và góc C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác ABD có góc ADC là góc ngoài bằng tỏng 2 góc trong không kề với nó.
=> Góc ADC = góc ABD + góc BAD
=> 110 = 80 + góc BAD => Góc BAD = 30 độ
Góc BAD = 30 => Góc CAD = 30 (do AD là phân giác)
Trong tam giác ADC có tổng các góc = 180 độ mà đã biết 2 góc: 110 và 30 nên góc C = 180 - 110 - 30 =40 độ
#)Giải :
Bài 1 :
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\frac{180^o}{12}=15\)
\(\hept{\begin{cases}\frac{\widehat{A}}{3}=15\\\frac{\widehat{B}}{4}=15\\\frac{\widehat{C}}{5}=15\end{cases}\Rightarrow\hept{\begin{cases}\widehat{A}=45^o\\\widehat{B}=60^o\\\widehat{C}=75^o\end{cases}}}\)
Vậy \(\widehat{A}=45^o;\widehat{B}=60^o;\widehat{C}=75^o\)
Bài 2 :
Áp dụng tính chất tỉ lệ thức :
\(2\widehat{A}=3\widehat{B}\Rightarrow\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3};3\widehat{B}=4\widehat{C}\Rightarrow\frac{\widehat{B}}{3}=\widehat{\frac{C}{4}}\)
\(\Rightarrow\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}\)
Tiếp tục áp dụng tính chất dãy tỉ số bằng nhau rồi làm thôi, ez nhỉ ^^
a, tam giác ABC có : ^B = ^C
=> tam giác ABC cân tại A (dh)
=> AB = AC (đn)
xét tam giác ADB và tam giác ADC có : ^B = ^C (gt)
^BAD = ^CAD do AD là pg của ^BAC (gt)
=> tam giác ADB = tam giác ADC (g-c-g)
b, tam giác ADB = tam giác ADC (Câu a)
=> ^ADB = ^ADC (đn)
mà ^ADB + ^ADC = 180 (kb)
=> ^ADB = 90
=> AD _|_ BC
=> AD là đcao của tam giác ABC