Cho tam giác ABC có cạnh BC = 40cm, đường cao AH = 16cm, trên cạnh AH lấy điểm M là điểm chính giữa, kẻ qua M đường thẳng song song với BC cắt AB và AC lần lượt tại E và F. Nối C với E
a.Tính diện tích tam giác ABC
b.Tính diện tích tam giác BEC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta thấy tam giác DEC Và DBE có chung chiều cao hạ từ đỉnh D mà Đoạn thẳng EC, EB bằng nhau nên Hai tam giác DEC, DEB bằng nhau
Ta thấy tam giác DEI , DAI có chung chiều cao hạ từ đỉnh D mà Đoạn thẳng AI, IE bằng nhau nên Hai tam giác DIA, DIE bằng nhau [1]
Ta thấy hai tam giác AIB, IBE có chung chiều cao hạ từ đỉnh B mà Đoạn thẳng AI, IE bằng nhau nên Hai tam giác ABI, IBE bằng nhau [2]
Từ [1] và [2] => Hai tam giác ABD và DBE bằng nhau mà hai tam giác DBE, DEC bằng nhau
=> Hai tam giác ABD , DEC bằng nhau
=> Tổng diện tích DBE, DEC gấp đôi diện tích tam giác ABD mà hai tam giác có trung chiều cao hạ từ B xuống nên đoạn thẳng DC gấp đôi đoạn thẳng AD.
Ta thấy hai tam giác AEC và AEB có chiều cao hạ từ A xuống mà đoạn thẳng BE và EC bằng nhau nên hai tam giác AEC và AEB bằng nhau
=> Tam giác AEC = 360 : 2 = 180 [cm2 ]
Ta thấy hai tam giác DEC và DEA có chung chiều cao hạ từ E mà đoạn thẳng DC gấp đôi AD
=> Tam giác AED = \(\frac{1}{3}\)tam giác AEC
=> Tam giác AED = \(\frac{1}{3}\) x 180
= 60 [cm2]
Từ [1] ta thấy diện tích tam giác ADI = \(\frac{1}{2}\) tam giác ADE
=>ADI = 60 x \(\frac{1}{2}\)
=> ADI = 30 [cm2]
Vậy diện tích tam giác ADI = 30 cm2
Giải
1)
2)
a) Gọi A là đáy, H là chiều cao
Theo đề bài ta có:
\(\frac{AxH}{2}\) = 72 và \(\frac{A}{12}\) = \(\frac{H}{3}\)
\(\frac{A}{12}\) = \(\frac{Hx4}{3x4}\) = \(\frac{Hx4}{12}\)
Vậy A = H x 4
Thế A vào thì ta có:
\(\frac{Hx4xH}{2}\) = 72
\(Hx4^2\) = 144
\(H^2\) = 144 : 4
\(H^2\) = 36
\(H^2\) = 6 x 6
H = 36
Thế H vào thì ta có:
\(\frac{Ax6}{2}\) = 72
A x 6 = 72 x 2
A x 6 = 144
A = 144 : 6
A = 24
b)
Nối B với N, ta có: S(NBM) = S( NMC). Vì hai tam giác có chung đường cao hạ từ N xuống BC và đáy BM = MC (*).
Theo bài ra MN // AB, nên đường cao hạ từ B xuống MN bằng đường cao hạ từ A xuống MN. Do đó ta có: S( BMN) = S(AMN). Vì hai tam giác có đường cao bằng nhau, đáy MN chung (**)
Từ (*) và (**) ta có: S(AMN) = S(MNC). Vì hai tam giác có diện tích cùng bằng S(BMN).
Do S(AMN) + S(MNC) = S(AMC)
Mà S(AMC) = 1/2 S(ABC). Vì hai tam giác chung đường cao hạ từ A xuống BC, đáy MC = 1/2 BC.
Vậy S(MNC) = 1/4 S(ABC) = 72 : 4 = 18 (cm2).
a) Xét \(\Delta ABC\) và \(\Delta HAC\) có:
\(\widehat{BAC}=\widehat{AHC}=90^0\)
\(\widehat{ABC}=\widehat{HAC}\) do cùng phụ với góc BAH )
suy ra: \(\Delta ABC~\Delta HAC\)
b) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)
\(\Leftrightarrow\)\(BC=\sqrt{100}=10\)
Áp dụng hệ thức lượng ta có:
\(AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\)cm
\(CH=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4\)cm
\(BH=BC-HC=10-6,4=3,6\)cm
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB
hay ABNM là hình thang
Bạn ơi! Bạn vẽ hình đi nha! Mik đọc thấy khó hiểu quá