cho ΔABC vuông tại A, góc ABC=60, tia p/ggóc ABC cắt AC tại D. Kể DEvuông góc BC (E ϵ BC). CM:
a, BE=BA
b, BD là trung trực của AE
c, AB<DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Xét tam giác vuông ABD và tam giác vuông EBD, có:
AD: cạnh chung
góc ABD = góc EBD ( gt )
Vậy tam giác vuông ABD = tam giác vuông EBD(cạnh huyền.góc nhọn)
=> BE=BA ( 2 cạnh tương ứng )
b.=> AD = ED ( 2 cạnh tương ứng )
=> Tam giác DAE cân tại D
Mà góc BDA = góc BDE ( 2 góc tương ứng )
=> BD là trung trực của đoạn thẳng AE
Hình vẽ
a) Do BD là tia phân giác của \(\widehat{BAC\left(gt\right)\Rightarrow}\) \(\widehat{ABD}=\widehat{DBC}hay\widehat{ABD}=\widehat{DBE}\)
Do \(DE\perp BC\left(gt\right)\Rightarrow\widehat{DEB}=\widehat{DEC}=90^o\)
Xét \(\Delta ABD\) và \(\Delta EDB\) có : \(\left\{{}\begin{matrix}\widehat{ABD}=\widehat{DBE}\left(cmt\right)\\BDchung\\\widehat{BAC}=\widehat{DEB}\left(=90^o\right)\end{matrix}\right.\)
\(\Rightarrow\Delta ABD=\Delta EDB\left(ch-gn\right)\)
\(\Rightarrow AB=BE\) ( 2 cạnh tương ứng )
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>BA=BE và DA=DE
=>ΔBAE cân tại B và BD là trung trực của AE
=>H là trung điểm của AE
a. xét tam giác vuông ADE và tam giác vuông ADF,có :
AB = AC ( ABC cân )
Góc EAD = góc FAD ( gt )
AD : cạnh chung
Vậy tam giác vuông ADE = tam giác vuông ADF ( c.g.c )
=> DE = DF ( 2 cạnh tương ứng )
b. xét tam giác vuông BDE và tam giác vuông CDF, có:
góc B = góc C ( ABC cân )
BD = CD ( AD là đường phân giác cũng là đường trung tuyến trong tam giác cân ABC )
Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền. góc nhọn)
c. ta có: AD là đường phân giác trong tam giác cân ABC cũng là đường trung trực của BC
a: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
\(\widehat{EAD}=\widehat{FAD}\)
Do đó: ΔAED=ΔAFD
SUy ra: DE=DF
b: Xét ΔBDE vuông tại E và ΔCDF vuông tại F có
BD=CD
DE=DF
Do đó: ΔBDE=ΔCDF
c: Ta có: ΔABC cân tại A
mà AD là phân giác
nên AD là đường trung trực của BC
\(a,\)(Sửa đề: \(\Delta ABD=\Delta EBD\))
Vì \(\begin{cases} AB=BE\\ \widehat{ABD}=\widehat{EBD}\\ BD\text{ chung} \end{cases}\) nên \(\Delta ABD=\Delta EBD(c.g.c)\)
\(\Rightarrow \widehat{BAD}=\widehat{BED}=90^0\\ \Rightarrow DE\bot BC\)
\(b,\Delta ABD=\Delta EBD(cmt)\\ \Rightarrow AD=DE\Rightarrow D\in\text{trung trực }AE\\ AB=BE\Rightarrow B\in \text{trung trực }AE\\ \Rightarrow BD\text{ là trung trực }AE\)
\(c,\begin{cases} \widehat{MAD}=\widehat{CED}=90^0\\ AD=DE\\ AM=EC \end{cases}\\\Rightarrow \Delta ADM=\Delta EDC(c.g.c)\\ \Rightarrow MC=MD\)
\(d,\Delta ADM=\Delta EDC(cmt)\\ \Rightarrow \widehat{ADM}=\widehat{EDC}\)
Mà 2 góc này ở vị trí đối đỉnh và \(A,D,C\) thẳng hàng nên \(M,D,E\) thẳng hàng
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
ta có: BA=BE
=>B nằm trên trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD\(\perp\)AE tại trung điểm của AE
c: Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
Ta có: AH\(\perp\)BC
DE\(\perp\)BC
Do đó: AH//DE
d: Ta có: \(\widehat{EDC}+\widehat{ACB}=90^0\)(ΔEDC vuông tại E)
\(\widehat{ABC}+\widehat{ACB}=90^0\)(ΔABC vuông tại A)
Do đó: \(\widehat{EDC}=\widehat{ABC}\)
e: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAK=ΔDEC
=>AK=EC và DK=DC
Ta có: BA+AK=BK
BE+EC=BC
mà BA=BE và AK=EC
nên BK=BC
=>B nằm trên đường trung trực của KC(3)
Ta có: DK=DC
=>D nằm trên đường trung trực của KC(4)
Ta có: MK=MC
=>M nằm trên đường trung trực của KC(5)
Từ (3),(4),(5) suy ra B,D,M thẳng hàng
Bài làm
a) Xét tam ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )
hay \(\widehat{ACB}+60^0=90^0\)
=> \(\widehat{ACB}=90^0-60^0=30^0\)
b) Xét tam giác ABE và tam giác DBE có:
\(\widehat{BAE}=\widehat{BDE}=90^0\)
Cạnh huyền: BE chung
Cạnh góc vuông: AB = BD ( gt )
=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )
=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )
=> BI là tia phân giác của góc BAC
Mà I thược BE
=> BE là tia phân giác của góc BAC
Gọi I là giao điểm BE và AD
Xét tam giác AIB và tam giác DIB có:
AB = BD ( gt )
\(\widehat{ABE}=\widehat{DBE}\)( cmt )
BI chung
=> Tam giác AIB = tam giác DIB ( c.g.c )
=> AI = ID (1)
=> \(\widehat{BIA}=\widehat{BID}\)
Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )
Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)
=> BI vuông góc với AD tại I (2)
Từ (1) và (2) => BI là đường trung trực của đoạn AD
Mà I thược BE
=> BE là đường trung trực của đoạn AD ( đpcm )
c) Vì tam giác ABE = tam giác DBE ( cmt )
=> AE = ED ( hai cạnh tương ứng )
Xét tam giác AEF và tam giác DEC có:
\(\widehat{EAF}=\widehat{EDC}=90^0\)
AE = ED ( cmt )
\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )
=> Tam giác AEF = tam giác DEC ( g.c.g )
=> AF = DC
Ta có: AF + AB = BF
DC + BD = BC
Mà AF = DC ( cmt )
AB = BD ( gt )
=> BF = BC
=> Tam giác BFC cân tại B
=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\) (3)
Vì tam giác BAD cân tại B ( cmt )
=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\) (4)
Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)
Mà Hai góc này ở vị trí đồng vị
=> AD // FC
d) Xét tam giác ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau ) (5)
Xét tam giác DEC vuông tại D có:
\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau ) (6)
Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)
Ta lại có:
\(\widehat{ABC}>\widehat{EBC}\)
=> AC > EC
Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)
=> EC = 1/2 AC.
=> E là trung điểm AC
Mà EC = EF ( do tam giác AEF = tam giác EDC )
=> EF = 1/2AC
=> AE = EC = EF
Và AE = ED ( cmt )
=> ED = EC
Mà EC = 1/2AC ( cmt )
=> ED = 1/2AC
=> 2ED = AC ( đpcm )
Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!??
`Answer:`
a. Theo giả thiết: BD là phân giác `\hat{ABC}=>\hat{ABD}=\hat{EBD}`
Xét `\triangleABD` và `\triangleEBD:`
`BD` chung
`\hat{ABD}=\hat{EBD}`
`=>\triangleABD=\triangleEBD(cg-gn)`
`=>BA=BE`
b. Xét `\triangleAIB` và `\triangleEIB:`
`BA=BE`
`BI` chung
`\hat{ABI}=\hat{EBI}`
`=>\triangleAIB=\triangleEIB(c.g.c)`
`=>AI=EI(1)`
`=>\hat{AIB}=\hat{EIB}`
Mà `\hat{AIB}+\hat{EIB}=180^o=>\hat{AIB}=\hat{EIB}=90^o`
`=>BI⊥AE(2)`
Từ `(1)(2)=>BI` là đường trung trực của `AE` hay `BD` là đường trung trực của `AE`
c. `\hat{ABD}=\hat{EBD}(cmt)` mà `\hat{ABD}+\hat{EBD}=\hat{ABC}`
\(\Rightarrow\widehat{ABD}=\widehat{EBD}=\frac{60^o}{2}=30^o\)
\(\Rightarrow\widehat{ADB}=90^o-30^o=60^o\)
Xét `\triangleABD:` `AB` đối diện với `\hat{ADB}`
Xét `\triangleDEC:` `DC` đối diện với `\hat{DEC}`
Mà `\hat{ABD}<\hat{DEC}=>AB<DC`