K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 3 2022

\(6x^3y^4-2x^4y^2+3x^2y^2+5x^4y^2-ax^3y^4=\left(6-a\right)x^3y^4+3x^4y^2+3x^2y^2\)

Do bậc của đa thức là 6

\(\Rightarrow6-a=0\Rightarrow a=6\)

19 tháng 3 2022

dạ em cảm ơn ạ

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:
$4x^5y^2-3x^3y+7x^3y+ax^5y^2=(a+4)x^5y^2+4x^3y$

Nếu $a+4\neq 0$ thì bậc của đa thức là $5+2=7$ (trái giả thiết)

Nếu $a+4=0$ thì bậc của đa thức là $3+1=4$ (thỏa mãn)

Vậy $a=-4$

a: \(H=6x^3y^4-2x^4y^2+3x^2y^2+5x^4y^2-A\cdot x^3y^4\)

\(=x^3y^4\left(6-A\right)+x^4y^2\left(5-2\right)+3x^2y^2\)

\(=\left(6-A\right)\cdot x^3y^4+x^4y^2\cdot3+3x^2y^2\)

Để H có bậc là 6 thì 6-A=0

=>A=6

b: Khi A=6 thì \(H=\left(6-6\right)\cdot x^3y^4+3x^4y^2+3x^2y^2\)

\(=3x^4y^2+3x^2y^2\)

\(=3x^2y^2\left(x^2+1\right)\)

\(x^2+1>1>0\forall x\ne0\)

\(x^2>0\forall x\ne0\)

\(y^2>0\forall y\ne0\)

Do đó: \(x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)

=>\(H=3x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)

=>H luôn dương khi x,y khác 0

3 tháng 5 2023

\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)

Bậc của đa thức \(3\)

Hệ số cao nhất là \(1\)

\(b,B\left(x\right)=A\left(x\right).\left(x-1\right)=\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-x-10x+10\\ =x^4-x^3+x^2-11x+10\)

Thay \(x=2\) vào \(B\left(x\right)\)

\(=2^4-2^3+2^2-11.2+10\\ =0\) 

Vậy tại \(x=2\) thì \(B\left(x\right)=0\)

15 tháng 9 2023

\(A=7x^3y-\dfrac{1}{2}xy-4x^3-5x-2+5xy\)

\(=7x^3y+\left(5-\dfrac{1}{2}\right)xy-4x^3-5x-2\)

\(=7x^3y+4,5xy-4x^3-5x-2\)

Đa thức A có Bậc 4.

\(B=-\dfrac{4}{3}xyz-\dfrac{1}{3}xy^2x+4-5xyz+3x^2y^2\)

\(=-\left(\dfrac{4}{3}+5\right)xyz-\dfrac{1}{3}xy^2z+3x^2y^2+4\)

\(=-\dfrac{19}{3}xyz-\dfrac{1}{3}xy^2z+3x^2y^2+4\)

Đa thức B có Bậc 4.

 

9 tháng 4 2017

A(1)=a.12+b.1+6=a+b+6=3

=>a+b=-3

Để đa thức A(x) có bậc 1 thì a phải là  0  =>b=-3

Vậy a=0, b=-3