Làm giúp mình vs mình cần gấp :
1. chứng minh : n^2 - 1 chia hết cho 24 , với mọi n nguyên tố lớn hơn 3
Cảm ơn mọi người !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
......................?
mik ko biết
mong bn thông cảm
nha ................
Ta có :
\(n^2 - 1 = (n-1)(n+1)\)
\(n \) là nguyên tố lớn hơn \(3 \implies n-1;n+1\) là hai số chẵn liên tiếp
\(=> (n-1)(n+1) \) chia hết cho \(8\) \((1)\)
Vì \(n \) là nguyên tố lớn hơn 3 nên ta có : \(n = 3k +1 ; 3k +2\) \((2)\)
Với \(n= 3k + 1\)
\(=> (n-1)(n+1) = (3k+1-1)(n+1) = 3k(n+1) \) chia hết cho 3
Với \(n = 3k+2\)
\(=> (n-1)(n+1) = (n-1)(3k+2+1) = (n-1)(k+1)3 \) chi hết cho 3
- Từ \((1) \),\((2)\) ta thấy \((n-1)(n+1) = n^2 -1\) chia hết cho cả \(8;3\)
\(=> n^2 - 1 \) chia hết cho \(24 (đpcm)\)
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
Với p là số nguyên tố lớn hơn 3 thì p không chia hết cho 3
\(\Rightarrow\)p có dạng 3k+1 và 3k+2
+) Với p=3k+1
Khi đó: 2p+7 = 2(3k+1)+7 = 6k+2+7 = 6k+9
Mà 6k+9 > 3 nên 6k+9 chia hết cho 3 hay 2p+7 là hợp số ( không thỏa mãn yêu cầu đề bài )
+) Với p=3k+2
Khi đó: 2p+7 = 2(3k+2)+7 = 6k+4+7 = 6k+11 - Là số nguyên tố ( thỏa mãn )
4p+7 = 4(3k+2)+7 = 12k+8+7 = 12k+15
Mà 12k+15 > 3 nên 12k+15 chia hết cho 3 hay 4p+7 là hợp số ( thỏa mãn )
Vậy ...
_HT_
Ta có:
2n+1 chia hết cho n-3
<=> 2n+1-6+6 chia hết cho n-3
<=> 2n-6+7 chia hết cho n-3
Vì 2n-6 chia hết cho n-3 mà 2n-6+7 chia hết cho n-3 => 7 chia hết cho n-3
=>n-3 thuộc Ư(7)={-1;1;-7;7}
Nếu n-3=-1 =>n=2(t/m)
Nếu n-3=1 =>n=4(t/m)
Nếu n-3=-7 =>n=-4(t/m)
Nếu n-3=7 =>n=10(t/m)
Vậy n= -4;2;4;10
a)
\(A=\left(n+3\right)^2-\left(n-1\right)^2\\ =n^2+6n+9-n^2+2n-1\\ =\left(n^2-n^2\right)+\left(6n+2n\right)+\left(9-1\right)\\ =8n+8\\ =8\left(n+1\right)⋮8\forall n\)
\(\Rightarrow A⋮8\forall n\)