K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

Ta có : 

\(n^2 - 1 = (n-1)(n+1)\)

\(n \) là nguyên tố lớn hơn \(3 \implies n-1;n+1\) là hai số chẵn liên tiếp 

\(=> (n-1)(n+1) \) chia hết cho \(8\)    \((1)\)

Vì \(n \) là nguyên tố lớn hơn 3 nên ta có : \(n = 3k +1 ; 3k +2\) \((2)\)

Với \(n= 3k + 1\)

\(=> (n-1)(n+1) = (3k+1-1)(n+1) = 3k(n+1) \) chia hết cho 3 

Với \(n = 3k+2\)

\(=> (n-1)(n+1) = (n-1)(3k+2+1) = (n-1)(k+1)3 \) chi hết cho 3

- Từ \((1) \),\((2)\) ta thấy \((n-1)(n+1) = n^2 -1\) chia hết cho cả \(8;3\)

\(=> n^2 - 1 \) chia hết cho \(24 (đpcm)\)

Bài 1:

Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

\(=6n⋮6\)

2 tháng 10 2021

1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)

2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)

Với p là số nguyên tố lớn hơn 3 thì p không chia hết cho 3

 \(\Rightarrow\)p có dạng 3k+1 và 3k+2

+) Với p=3k+1

Khi đó: 2p+7 = 2(3k+1)+7 = 6k+2+7 = 6k+9

Mà 6k+9 > 3 nên 6k+9 chia hết cho 3 hay 2p+7 là hợp số ( không thỏa mãn yêu cầu đề bài )

+) Với p=3k+2

Khi đó: 2p+7 = 2(3k+2)+7 = 6k+4+7 = 6k+11 - Là số nguyên tố ( thỏa mãn )

             4p+7 = 4(3k+2)+7 = 12k+8+7 = 12k+15

Mà 12k+15 > 3 nên 12k+15 chia hết cho 3 hay 4p+7 là hợp số ( thỏa mãn )

Vậy ...

_HT_

3 tháng 2 2022

em chịu

30 tháng 1 2016

de thoi bang 356

30 tháng 1 2016

Ta có:

       2n+1 chia hết cho n-3

<=> 2n+1-6+6 chia hết cho n-3

<=> 2n-6+7 chia hết cho n-3

Vì 2n-6 chia hết cho n-3 mà 2n-6+7 chia hết cho n-3 => 7 chia hết cho n-3

=>n-3 thuộc Ư(7)={-1;1;-7;7}

Nếu n-3=-1 =>n=2(t/m)

Nếu n-3=1 =>n=4(t/m)

Nếu n-3=-7 =>n=-4(t/m)

Nếu n-3=7 =>n=10(t/m)

Vậy n= -4;2;4;10

21 tháng 10 2015

2009^2010đồng dư với 1 (theo mod 2010)

15 tháng 9 2016

a)

 \(A=\left(n+3\right)^2-\left(n-1\right)^2\\ =n^2+6n+9-n^2+2n-1\\ =\left(n^2-n^2\right)+\left(6n+2n\right)+\left(9-1\right)\\ =8n+8\\ =8\left(n+1\right)⋮8\forall n\)

\(\Rightarrow A⋮8\forall n\)

 

15 tháng 9 2016

(n + 6)2 - (n - 6)2

= (n + 6 + n - 6)(n + 6 - n + 6)

= 12 . 2n

= 24n chia hết cho 24 với mọi n thuộc Z (đpcm)