cho tam giác abc cân tại a. kẻ bh vuông góc với ac, ce vuông góc với ab ( d thuộc ac và e thuộc ab ). o là giao điểm của bd và ce.
a) chứng minh tam giác adb = tam giác aec.
b) chứng minh rằng tam giác boc cân.
c) chứng minh rằng ed // bc.
d) gọi m trung điểm của bc. chứng minh em = 1/2 bc
a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC(Cạnh huyền-góc nhọn)
b. Ta có : AB = BE + EA
CA = CD + DA
MÀ : AB=CA ( TAM GIÁC ABC CÂN TẠI A )
EA=DA ( ΔADB=ΔAEC)
⇒BE=CD
XÉT ΔOBE VÀ ΔOCD
CÓ : \(\widehat{E}=\widehat{D}\) (GT)
BE=CD (CMT)
\(\widehat{EBO}=\widehat{DCO}\) (ΔADB=ΔAEC)
⇒ΔOBE = ΔOCD (G-C-G)
⇒OB = OC (2 CẠNH TƯƠNG ỨNG)
⇒ΔBOC CÂN TẠI O