K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

Mk nghĩ bn chép sai đề rùi, đề phải như này mới đúng 

A = n2 + n + 1

A = n.(n + 1) + 1

a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp nên n.(n + 1) là số chẵn

=> A = n.(n + 1) + 1 là số lẻ, không chia hết cho 2

b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp nên n.(n + 1) chỉ có thể tận cùng là 0; 2; 6

=> A = n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5

18 tháng 1 2017

minh ko hieu cau hoi noi ro ra cho minh

24 tháng 11 2016

A chia hết cho 15 => A không chia hết cho 3 hoặc 5

*xét A không chia hết  cho 5

A=n2+n+1=n.n+n+1=n(n+1)+1

n(n+1) chỉ có thể tận cùng = 2,6,0,

=>n(n+1)+1 chỉ có thể có tận cùng =3,7,1

mà số có tận cùng = 3,7,1 không  chia hết cho 5 => A không chia hết cho 15

24 tháng 11 2016

A=n(n+1)+1

n(n+1) h hai so tu nhien lien tiep la so chan ko bao gio co tan cung =4 

=> A la so le ko co tan cung la 5 => ko chia het cho 5=> ko chia het cho 15

21 tháng 7 2019

\(n^2+n+1=n\left(n+1\right)+1\)

vì n và n +1 là 2 số tự nhiên liên tiếp nên n(n+1) chia hết cho 2 

=> A chia 2 dư 1 => A lẻ

21 tháng 7 2019

a) Ta có : A = n2 + n + 1

                   = n(n + 1) + 1 (1)

Vì n(n+1) là tích 2 số tự nhiên liên tiếp 

=> n(n + 1) \(\in\)2k (k\(\inℕ\))

=> n(n + 1) + 1 \(\in\)2k + 1 (k\(\inℕ\)

mà 2k + 1 không chia hết cho 2 

=> 2k + 1 là số lể 

=> n2 + n + 1 là số lẻ (đpcm)

b) Từ (1) ta có : A = n(n + 1) + 1

Mà n(n + 1) = ....0 = ...2 = ...6

=> n(n + 1) + 1 =  ....1 = ...3 = ...7

Ta nhận thấy các chữ số tận cùng trên không chia hết cho 5

=> n(n + 1) + 1 không chia hết cho 5

=> A không chia hết cho 5 (đpcm)

A=n(n+1)+1

Vì n(n+1) chia hết cho 2

nên A=n(n+1)+1 không chia hết cho 2

10 tháng 4 2016

"Mượn 1 con lạc đà nữa, khi đó ông chủ sẽ có 18 con. Anh cả được ½ số lạc đà, nghĩa là sẽ được 18 : 2 = 9 con. Anh hai được 1/3 số lạc đà, nghĩa là sẽ được 18 : 3 = 6 con. Anh út được 1/9 số lạc đà, nghĩa là sẽ được 18 : 9 = 2 con.

Khi đó, ông chủ còn lại 18 – (9 + 6 + 2) = 1 con. Đây chính là con đã mượn về. Do đó sau khi đem trả lại, số lạc đà mỗi người tương ứng sẽ là 9, 6, 2 con".

17 tháng 7 2016

a) n có 2 trường hợp

Với n = 2k +1 ( k thuộc Z)

=> (2k+1+6) . (2k+1+7)

= (2k + 7) .( 2k + 8)

= (2k + 7) . 2.(k+4) (chia hết cho 2)      ( 1 )

Với n = 2k

=> (2k + 6) . ( 2k + 7)

= 2. (k+3) . ( 2k + 7)   ( chia hết cho 2)     (2 )

Từ 1 và 2 

=> moi n thuoc Z thi

(n+6)x(n+7) chia het cho 2

17 tháng 7 2016

a) + Nếu n lẻ thì n + 7 chẵn => n + 7 chia hết cho 2 => (n + 6).(n + 7) chia hết cho 2

+ Nếu n chẵn thì n + 6 chẵn => n + 6 chia hết cho 2=> (n + 6).(n + 7) chia hết cho 2

=> (n + 6).(n + 7) luôn chia hết cho 2

Nói ngặn gọn hơn là: Do (n + 6).(n + 7) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2

b) n2 + n + 3

= n.(n + 1) + 3

Vì n.(n + 1) là tích 2 số tự nhiên nên chia hết cho 2; 3 không chia hết cho 2

=> n2 + n + 3 không chia hết cho 2

3 tháng 6 2016

a)

Chứng minh rằng : (n-1 ) (n+2) + 12 không chia hết cho 9  

Giã thiết biểu thức : (n-1 ) (n+2) + 12 chia hết cho 9 .

Đặt A = (n-1 ) (n+2) + 12 , nên A = 9 hoặc bội số của 9 .

Ta có :  A = (n-1 ) (n+2) + 12

 A = n x n + n x 2 - n - 2 + 12  

A = n x n + n + 10  A = n x (n + 1) + 10  

A - 10 = n x (n + 1)  

Vì theo giã thiết A là 9 hoặc bội số của 9 nên A chia hết cho 9 .

Vậy Nếu A bớt đi 9 thì A -9 sẽ chia hết cho 9 , nhưng kết quả biểu thức trên là :

A - 10 = n x (n + 1) mà A - 10 không chia hết cho 9 .  

Vậy A - 10 = n x (n + 1) không chia hết cho 9 .

Hay (n-1 ) (n+2) + 12 không chia hết cho 9

b)

Chứng minh rằng : ( n + 2 ) ( n +9 )+21 không chia hết cho 49  

Muốn biểu thức ( n + 2 ) ( n +9 ) + 21 chia hết cho 49 thì biểu thức này = 49 hay bội số của 49.  

Đặt : A = ( n + 2 ) ( n +9 ) + 21 ( A là bội số của 49) ta có :  

A = ( n + 2 ) ( n +9 ) + 21  

A = n x n + 9 x n + 2 x n + 18 + 21  

A = n x n + 11 x n + 39  

A - 39 = n x ( n + 11)  

Vì giả thiết A là bội của 49 nên A - 39 không thể chia hết cho 49 nên  

A = ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49  

Vậy : ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49

3 tháng 6 2016

Câu a :

Chứng minh rằng : (n-1 ) (n+2) + 12 không chia hết cho 9  

Giã thiết biểu thức : (n-1 ) (n+2) + 12 chia hết cho 9 .

Đặt A = (n-1 ) (n+2) + 12 , nên A = 9 hoặc bội số của 9 .

Ta có :  A = (n-1 ) (n+2) + 12

 A = n x n + n x 2 - n - 2 + 12  

A = n x n + n + 10  A = n x (n + 1) + 10  

A - 10 = n x (n + 1)  

Vì theo giã thiết A là 9 hoặc bội số của 9 nên A chia hết cho 9 .

Vậy Nếu A bớt đi 9 thì A -9 sẽ chia hết cho 9 , nhưng kết quả biểu thức trên là :

A - 10 = n x (n + 1) mà A - 10 không chia hết cho 9 .  

Vậy A - 10 = n x (n + 1) không chia hết cho 9 .

Hay (n-1 ) (n+2) + 12 không chia hết cho 9

Câu b :

Chứng minh rằng : ( n + 2 ) ( n +9 )+21 không chia hết cho 49  

Muốn biểu thức ( n + 2 ) ( n +9 ) + 21 chia hết cho 49 thì biểu thức này = 49 hay bội số của 49.  

Đặt : A = ( n + 2 ) ( n +9 ) + 21 ( A là bội số của 49) ta có :  

A = ( n + 2 ) ( n +9 ) + 21  

A = n x n + 9 x n + 2 x n + 18 + 21  

A = n x n + 11 x n + 39  

A - 39 = n x ( n + 11)  

Vì giã thiết A là bội của 49 nên A - 39 không thể chia hết cho 49 nên  

A = ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49  

Vậy : ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49

Nguồn :Toán Tiểu Học Pl

10 tháng 5 2022