Cho đường tròn tâm O. Từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB,AC. Gọi M là một điểm thuộc cung nhỏ BC. Tiếp tuyến tại M cắt AB,AC lần lượt ở D và E.Gọi I và K lần lượt là giao điểm của OD và OE với BC. Chứng minh tứ giác OBDK nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BEI+góc BDI=180 độ
=>BEID nội tiếp
góc CEI+góc CFI=180 độ
=>CEIF nội tiếp
b: góc IED=góc IBD=1/2*sđ cung BI
góc IFE=góc ICE=1/2*sđ cung BI
=>góc IED=góc IFE
góc IDE=góc IBE=1/2*sđ cung IC
góc IEF=góc ICF=1/2*sđ cung IC
=>góc IDE=góc IEF
=>ΔIDE đồng dạng với ΔIEF
a: Xét (O) có
AB,AC là tiếp tuyến
Do đó; AB=AC
=>A nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại trung điểm của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
=>\(OH\cdot10=6^2=36\)
=>OH=36/10=3,6(cm)
b:
ΔOBA vuông tại B
=>\(OB^2+BA^2=OA^2\)
=>\(BA^2=10^2-6^2=64\)
=>\(BA=\sqrt{64}=8\left(cm\right)\)
Xét (O) có
DB,DM là tiếp tuyến
Do đó: DB=DM và OD là phân giác của \(\widehat{MOB}\)
Xét (O) có
EM,EC là tiếp tuyến
Do đó: EM=EC và OE là phân giác của \(\widehat{MOC}\)
Chu vi tam giác AED là:
\(C_{AED}=AD+DE+AE\)
\(=AB-BD+DM+ME+AC-CE\)
=AB+AC
=2*AB
=16(cm)
c:
OD là phân giác của góc MOB
=>\(\widehat{MOD}=\dfrac{1}{2}\cdot\widehat{MOB}\)
OE là phân giác của góc MOC
=>\(\widehat{MOE}=\dfrac{1}{2}\cdot\widehat{MOC}\)
Xét ΔBOA vuông tại B có \(sinBOA=\dfrac{BA}{OA}=\dfrac{4}{5}\)
nên \(\widehat{BOA}\simeq53^0\)
\(\widehat{DOE}=\widehat{DOM}+\widehat{MOE}\)
\(=\dfrac{1}{2}\cdot\widehat{BOM}+\dfrac{1}{2}\cdot\widehat{COM}\)
\(=\dfrac{1}{2}\cdot\widehat{BOC}=\widehat{BOA}\)
\(=53^0\)
Từ một điểm A nằm bên ngoài đường tròn ( O ), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm )
a) Chứng minh rằng ABOC là tứ giác nội tiếp
b)Cho bán kính đường tròn ( O ) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC
c) Gọi ( K ) là đường tròn qua A và tiếp xúc với đường thẳng BC tạo C. Đường trknf (K) và đường tròn (O ) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC
a: Sửa đề: MK\(\perp\)AB
Xét tứ giác BIMK có \(\widehat{BIM}+\widehat{BKM}=90^0+90^0=180^0\)
nên BIMK là tứ giác nội tiếp
=>B,I,M,K cùng thuộc một đường tròn
b: Xét tứ giác IMHC có \(\widehat{MIC}+\widehat{MHC}=90^0+90^0=180^0\)
nên IMHC là tứ giác nội tiếp
=>\(\widehat{MHI}=\widehat{MCI}\)(1)
Ta có: BIMK là tứ giác nội tiếp
=>\(\widehat{MIK}=\widehat{MBK}\left(2\right)\)
Xét (O) có
\(\widehat{MCB}\) là góc nội tiếp chắn cung MB
\(\widehat{MBK}\) là góc tạo bởi tiếp tuyến BK và dây cung BM
Do đó: \(\widehat{MCB}=\widehat{MBK}=\widehat{MCI}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{MIK}=\widehat{MHI}\)
Ta có: BIMK là tứ giác nội tiếp
=>\(\widehat{MKI}=\widehat{MBI}=\widehat{MBC}\left(4\right)\)
Ta có: IMHC là tứ giác nội tiếp
=>\(\widehat{MIH}=\widehat{MCH}\left(5\right)\)
Xét (O) có
\(\widehat{MBC}\) là góc nội tiếp chắn cung MC
\(\widehat{MCH}\) là góc tạo bởi tiếp tuyến CH và dây cung CM
Do đó: \(\widehat{MBC}=\widehat{MCH}\left(6\right)\)
Từ (4),(5),(6) suy ra \(\widehat{MIH}=\widehat{MKI}\)
Xét ΔMIH và ΔMKI có
\(\widehat{MIH}=\widehat{MKI}\)
\(\widehat{MHI}=\widehat{MIK}\)
Do đó: ΔMIH~ΔMKI
=>\(\dfrac{MI}{MK}=\dfrac{MH}{MI}\)
=>\(MI^2=MH\cdot MK\)
chứng minh tứ giác OBDK nội tiếp:
dựa vào góc DBK=DOK (vì hai góc cùng chắn cung DK)
vậy, ta cần chứng minh DBK=DOK
đặt giao của OM với AB là H
dễ dàng chứng minh: DBK=BOA=1/2 BOC (1)
có M thuộc (O) và tiếp tuyến CD của M nên chứng minh được tam giác OBD=OMD (ch,cgv)
=> góc BOD=DOM và MOE=COE (chứng minh tương tự)
=> DOM+EOM=DOE=1/2BOM+1/2MOC=1/2BOC (2)
từ (1),(2) => DOK=KBD (đpcm)