K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét (O) có 

\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ACB}=90^0\)(Hệ quả góc nội tiếp)

hay \(\widehat{HCB}=90^0\)

Xét tứ giác HKBC có 

\(\widehat{HKB}\) và \(\widehat{HCB}\) là hai góc đối

\(\widehat{HKB}+\widehat{HCB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: HKBC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

1: góc BCA=1/2*180=90 độ

góc HKB+góc HCB=180 độ

=>HCBK nội tiếp

2: góc ACM=1/2*sđ cung AM

góc ACK=góc HCK=góc MBA=1/2*sđ cung AM

=>góc ACM=góc ACK

a: Xét (O) có 

ΔACB nội tiếp
AB là đường kính

Do đó: ΔACB vuông tại C

Xét tứ giác HCBK có 

\(\widehat{HCB}+\widehat{HKB}=180^0\)

Do đó: HCBK là tứ giác nội tiếp

b: Vì HCBK là tứ giác nội tiếp

nên \(\widehat{ACK}=\widehat{HBK}\)

mà \(\widehat{ACM}=\widehat{HBK}\left(=\dfrac{sđ\stackrel\frown{AM}}{2}\right)\)

nên \(\widehat{ACM}=\widehat{ACK}\)

1: góc ACB=1/2*180=90 độ

góc HKB+góc HCB=180 độ

=>CBKH nội tiếp

2: góc MCA=1/2*sđ cung MA

góc ACK=góc MBA=1/2*sđ cung MA

=>góc MCA=góc KCA

=>CA là phân giác của góc MCK

13 tháng 1 2022

C2 yêu cầu gì v mik k thấy