cho tam giác ABC vuông tại A, có độ dài của các cạnh thỏa mãn hệ thức: BC^2 = (căn 3 + 1)AC^2 + ( căn 3 - 1 ) AB.AC. Tính số đo góc ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(BC^2=AC^2+AB^2\)( pytago )
\(\Rightarrow AC^2+AB.AC=AC^2+AB^2\Leftrightarrow AB^2-AB.AC=0\)
\(\Leftrightarrow AB\left(AB-AC\right)=0\Rightarrow AB=AC\)
hay tam giác ABC vuông cân tại A
=> ^B = \(\dfrac{90^0}{2}=45^0\)
Đặt độ dài cạnh AB = x; điều kiện: x > 0
Theo bài ra theo điều (1) ta có: BC = x + 2a (3)
Không mất tính tổng quát. g/s : AC>AB
Trên đoạn AB lấy F sao cho AE=AF
Xét tam giác AED và tam giác AFD có:
AE=AF
AD chunh
^EAD=^FAD ( DA là phân giác góc A)
=> Tam giác AED =Tam giác FFD
=> DE=DF (1)
Ta lại có:
^DFB =^DAF+^ADF =^DAE+^ADE=^CED ( các cặp góc bằng nhau, tính chất góc ngoài của tam giác)
=> ^DFB=^CED
mà ^CED=^CBA ( cùng phụ góc ECD)
=> ^DFB=^CBA
=> Tam giác DFB cân
=> DF=DB (2)
Từ (1) , (2) => DE=DB và ED vuông BD
=> Tam giác BDE vuông cân
b) Tam giác BDE vuông cân
=> ^^DBE=^DEB=45^o
+)Xét tam giác AEB có: ^EAB =90^o; ^BEA=^BCE+^CBE=^ACB+^DBE=30^o+45^o=75^o (tính chất góc ngoài)
=> ^EBA=90^o-^EAB=90^o-75^o=15^o
+)Xét tam giác CED vuông tại D có góc C bằng 30 độ
=> CE=2ED=\(2\sqrt{3}\)
Áp dụng định lí pitago
CD^2=CE^2-ED^2=9 => CD=3
Tam giác EDB vuông cân
\(DB=DE=\sqrt{3}\)
Áp dụng định li pitago
\(EB^2=DB^2+DE^2=6\Rightarrow EB=\sqrt{6}\)
Trog tam giác BEC có: \(EC=2\sqrt{3};BC=3+\sqrt{3};BE=\sqrt{6}\)
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Vậy: \(AB=4\sqrt{5}cm\)
Bài 2:
Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:
\(MP^2=MN^2+NP^2\)
\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)
hay MN=4cm
Vậy: MN=4cm
Bài 1 :
- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)
\(\Leftrightarrow AB^2+8^2=12^2\)
\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )
Vậy ...
Bài 2 :
- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :
\(MN^2+NP^2=MP^2\)
\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)
\(\Leftrightarrow MN=4\) ( đvđd )
Vậy ...