Cho tam giác ABC vuông tại A có ABC=60 độ tia phân giác góc B cắt AC tại D.Trên tia C lấy điểm E sao cho BA=BE a.vẽ mô hình b.viết giả thiết,kết luận c.chứng minh tam giác ABD=tam giác EBD d.chứng minh tam giác ABE là tam giác đều mn giúp mk với ạ,mk chb bài để thi😢😢
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>góc BED=góc BAD=90 độ
=>DE vuông góc BC
b: Xét ΔDAM vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADM=góc EDC
=>ΔDAM=ΔDEC
=>AM=EC
c: Xét ΔAEC và ΔEAM có
AE chung
EC=AM
AC=EM
=>ΔAEC=ΔEAM
https://olm.vn/hoi-dap/tim-kiem?id=205295114093&id_subject=1&q=++++++++++Cho+tam+gi%C3%A1c+ABC+vu%C3%B4ng+t%E1%BA%A1i+A.Tia+ph%C3%A2n+gi%C3%A1c+c%E1%BB%A7a+g%C3%B3c+ABC+c%E1%BA%AFt+AC+t%E1%BA%A1i+D.Tr%C3%AAn+c%E1%BA%A1nh+BC+l%E1%BA%A5y+%C4%91i%E1%BB%83m+E+sao+cho+BE=BAa)cmr+tam+gi%C3%A1c+ABD=EBDb)+Qua+%C4%91i%E1%BB%83m+C+k%E1%BA%BB+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+BD+t%E1%BA%A1i+H,+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+BD+c%E1%BA%AFt+tia+BA+t%E1%BA%A1i+F+cmr+BC=BEc)cmr+tam+gi%C3%A1c+ABC=EBFd)cmr+D,E,F+th%E1%BA%B3ng+h%C3%A0ng+%F0%9F%98%82+++++++++ BN THAM KHẢO Ở LINK NÀY
A)Xét tam giác ABD và EBD
DB chung
\(\widehat{EBD}=\widehat{DBA}\)
AB=AE
=> tam giác ABD = tam giác EBD
B)DE=AD
DE\(⊥\)BC
Xét tam giác vuông DEC và DAM
\(\widehat{CDE}=\widehat{MDA}\)
AD=DE
=> tam giác ADM = tam giác EDC => CE =AM
C) MÌNH KO BIẾT
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(gt)
nên \(\widehat{BED}=90^0\)
Xét ΔADM vuông tại A và ΔEDC vuông tại E có
DA=DE(ΔABD=ΔEBD)
\(\widehat{ADM}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADM=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: AM=EC(Hai cạnh tương ứng)
c) Xét ΔBAE có BA=BE(gt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Suy ra: \(\widehat{BAE}=\widehat{BEA}\)(hai góc ở đáy)
mà \(\widehat{BAE}+\widehat{MAE}=180^0\)(hai góc kề bù)
và \(\widehat{BEA}+\widehat{AEC}=180^0\)(hai góc kề bù)
nên \(\widehat{AEC}=\widehat{EAM}\)
Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
=>\(\widehat{BAD}=\widehat{BED}=90^0\)
=>DE\(\perp\)BC
wow, Trâu lm hình đc tick .-.