1) Cho 2 góc kề bù ^AOB và ^BOC. Gọi Om là tia p/giác của ^AOB. Trong đó ^BOC vẽ tia On ,sao cho On vuông góc vs Om. Chứng minh rằng tia On là tia p/ giác của ^BOC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chú ý: Kí hiệu * là độ
-Vì OM là tia phân giác của góc AOB nên
góc AOM = góc MOB = \(\frac{gócAOB}{2}\) (1)
-Vì ON là tia phân giá của góc BOC nên
góc BON = góc NOC = \(\frac{gócBOC}{2}\) (2)
-Ta có góc AOB + góc BOC = 180* (vì kề bù)
Do đó: \(\frac{gócAOB}{2}+\frac{gócBOC}{2}=\frac{180}{2}\)= 90* (3)
Từ (1), (2) và (3) suy ra góc MON = 90* (hay ON vuông góc với OM)
-Vì đường thẳng a đi qua D và vuông góc với OM nên góc D = 90*
-Ta có góc MON = góc D (=90*) mà chúng đang ở vị trí đồng vị
Suy ra a // ON
Vì OM là tia phân giác của góc AOB nên:
góc AOM=góc MOB
Ta có:góc BOM+góc BON = góc MON=90 độ
Góc AOC=180 độ (góc bẹt)
=>góc AOC-góc MON= góc MOA+góc NOC
Mà góc MOA = góc BOM Nên:
=> góc BON=góc CON
hay ON là tia phân giác của góc BOC
* Vì Om là tia phân giác của AOB nên mOB = 1/2 AOB
* Vì On vuông góc với Om nên mOn = 90
* Vì ON nằm giữa OB và OC nên BOn+nOC=BOC
* Vì AOB và BOC là hai góc kề bù nên AOB + BOC = 180
Ta có: mOn = mOB + BOn
90 = 1/2 AOB + BOn
1/2 180 = 1/2 AOB + BOn
Vậy BOn = 1/2 BOC
Vậy BOn là tia phân giác của BOc