K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

b) =x3+8x-9

=x3-x2+x2-x+9x-9

=x2(x+1)+x(x+1)+9(x+1)

=(x+1)(x2+x+9)

24 tháng 7 2016

\(=\left[\left(x+y\right)^3-1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+1+2\left(x+y\right)\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+y^2+2xy+1+2x+2y-3xy\right)\)

\(=\left(x+y+1\right)\left(x^2+y^2-xy+1+2x+2y\right)\)

\(=\left(x+y-1\right)\left[\left(x^2+1+2x\right)\left(y^2-xy+2y\right)\right]\)

\(=\left(x+y-1\right)\left(x+1\right)^2\left(y-x+2\right)y\)

12 tháng 7 2021

undefined

a) Ta có: \(a^3y^3+125\)

\(=\left(ay+5\right)\left(a^2y^2-5ay+25\right)\)

b) Ta có: \(8x^3-y^3-6xy\cdot\left(2x-y\right)\)

\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)-6xy\left(2x-y\right)\)

\(=\left(2x-y\right)\left(4x^2+2xy-6xy+y^2\right)\)

\(=\left(2x-y\right)^3\)

10 tháng 10 2021

a) \(=\left(x-2\right)^2\)

b) \(=\left(2x+1\right)^2\)

c) \(=\left(4x-3y\right)\left(4x+3y\right)\)

d) \(=\left(4-x-3\right)\left(4+x+3\right)=\left(1-x\right)\left(x+7\right)\)

e) \(=\left(2x-3x+1\right)\left(2x+3x-1\right)=\left(1-x\right)\left(5x-1\right)\)

f) \(=\left(x-y\right)\left(x^2+xy+y^2\right)\)

g) \(=\left(x+3\right)\left(x^2-3x+9\right)\)

h) \(=\left(x+2\right)^3\)

i) \(=\left(1-x\right)^3\)

10 tháng 10 2021

a/ $=(x-2)^2$

b/ $=(2x+1)^2$

c/ $=(4x-3y)(4x+3y)$

d/ $=(1-x)(x+7)$

e/ $=(-x+1)(5x-1)$

f/ $=(x-y)(x^2+xy+y^2)$

g/ $=(3+x)(9-3x+x^2)$

h/ $=(x+2)^3$

i/ $=(1-x)^3$

10 tháng 10 2021

a: \(x^2-4x+4=\left(x-2\right)^2\)

b: \(4x^2+4x+1=\left(2x+1\right)^2\)

g: \(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)

18 tháng 7 2016

a) Đặt a + b = x ; a - b = y. Khi đó:
\(\left(a+b\right)^3-\left(a-b\right)^3\)
\(\Leftrightarrow x^3-y^3\)
\(\Leftrightarrow\left[x-y\right]\left[x^2+xy+y^2\right]\)
Thế lại vào ta có:
\(\Leftrightarrow\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(\Leftrightarrow\left[\left(a-a\right)+\left(b+b\right)\right]\left[\left(a^2+b^2+2ab\right)+\left(a^2-b^2\right)+\left(a^2+b^2-2ab\right)\right]\)
\(\Leftrightarrow2b\left[\left(a^2+a^2+a^2\right)+\left(b^2-b^2+b^2\right)+\left(2ab-2ab\right)\right]\)
\(\Leftrightarrow2b\left[3a^2+b^2\right]\)

Mik làm tuỳ theo mình piết thôi nhé

a)   ( a + b )3- ( a - b )3= a+ b3 - a- b= a- a3 + b- b3 = 0

b) tương tự như ở trên!!! Hơi khác một tí!!!

c)   ( 6x - 1 )2 - ( 3x + 2 ) = ..........

\(\left(a+b\right)^3-\left(a-b\right)^3\)

\(=\left(a+b-a+b\right)\left(\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right)\)

\(=2b\left(\left(a+b\right)^2+\left(a^2-b^2\right)+\left(a-b\right)^2\right)\)

\(\left(a+b\right)^3+\left(a-b\right)^3\)

\(=\left(a+b+a-b\right)\left(\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right)\)

\(=2a\left(\left(a+b\right)^2-\left(a^2-b^2\right)+\left(a-b\right)^2\right)\)

19 tháng 7 2016

a) (a+b)3 -(a-b)= a3 + 3a2b + 3ab2 +b3 - a3 + 3a2b - 3ab2 +b3

                       = 2a3 + 6a2b  + 2b3

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Lời giải:
$x^4y^4-z^4=(x^2y^2)^2-(z^2)^2=(x^2y^2-z^2)(x^2y^2+z^2)$

$=(xy-z)(xy+z)(x^2y^2+z^2)$

$(x+y+z)^2-4z^2=(x+y+z)^2-(2z)^2=(x+y+z-2z)(x+y+z+2z)$
$=(x+y-z)(x+y+3z)$

$\frac{-1}{9}x^2+\frac{1}{3}xy-\frac{1}{4}y^2=\frac{-4x^2+12xy-9y^2}{36}$

$=-\frac{4x^2-12xy+9y^2}{36}=-\frac{(2x-3y)^2}{36}=-\left(\frac{2x-3y}{6}\right)^2$

12 tháng 7 2021

Câu trả lời của cô quá đúng luôn đấy

27 tháng 9 2016

Ta có:  x6 -y6= (x3) -(y3)2  = (x3  - y3)(x3 + y3)

27 tháng 9 2018

\(x^6-y^6\)

\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)

hk 

tốt

13 tháng 10 2017

(3x-1)^2 - 16 = (3x-1)^2 - 4^2

                   = (3x-1-4)(3x-1+4)

                   = (3x-5)(3x+3)

27 tháng 9 2018

\(\left(3x-1\right)^2-16\)

\(=\left(3x-1\right)^2-4^2\)

\(=\left(3x-1-4\right)\left(3x-1+4\right)\)

\(=\left(3x-5\right)\left(3x+3\right)\)

\(=3\left(x+1\right)\left(3x-5\right)\)

1 tháng 10 2016

a) \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)

\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)

\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)

\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)

b) \(3x^4y^2+3x^3y^2+3xy^2+3y^2\)

\(=\left(3x^4y^2+3xy^2\right)+\left(3x^3y^2+3y^2\right)\)

\(=3xy^2\left(x^3+1\right)+3y^2\left(x^3+1\right)\)

\(=\left(3xy^2+3y^2\right)\left(x^3+1\right)\)

\(=3y^2\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)

\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)

c) \(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2+x+y^2+y+1-xy\right)\)