Chứng minh rằng:
4n+3+4n+2—4n+1—4n chia hết cho 30
Bạn nào làm nhanh mìn h tích đúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=7+7^2+7^3+7^4+...+7^{4n}\)
\(=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(=7\left(1+7+7^2+7^3\right)+...+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(=7\cdot400+...+7^{4n-3}\cdot400\)
\(=400\left(7+...+7^{4n-3}\right)⋮400\forall n\in N\)
Ta có: \(A=7+7^2+7^3+7^4+...+7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\)
\(A=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(A=7\left(1+7+7^2+7^3\right)+...+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(A=7.400+7^5.400+...+7^{4n-3}.400\)
\(A=400.\left(7+7^5+..+7^{4n-3}\right)\)luôn chia hết cho 400
A=7+72+74+74+...+74n-3+74n-2+74n-1+74n
A=(7+72+73+74)+...+(74n-3+74n-2+74n-1+74n)
A=7(1+7+72+73)+...+74n-3(1+7+72+73)
A=7.400+75.400+...+74n-3.400
A=400.(7+75+..+74n-3)luôn chia hết cho 400
4n+3+4n+2-4n+1-4n
=4n.43+4n.42-4n.4-4n
=4n.(43+42-4-1)
=4n.75
=22n.75
=22n-1.2.75
=22n-1.150 chia hết cho 30 (vì 150 chia hết cho 30)
=>4n+3+4n+2-4n+1-4n chia hết cho 30
30=2.3.5
ta có:4n+3+4n+2-4n+1-4n=4n.43+4n+42-4n-4-4n=4n.(43+42-4-1)=4n.75
mà 75 chia hết cho 2,3 và 5
vậy...