K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
7 tháng 6 2021

\(C=-x^2-y^2+xy+2x+2y\)

\(2C=-2x^2-2y^2+2xy+4x+4y\)

\(2C=-\left(x-y\right)^2-\left(x-2\right)^2-\left(y-2\right)^2+4\le4\)

Dấu \(=\)khi \(x=y=2\).

\(2x^2+y^2-2y=2\left(xy-1\right)\)

\(2x^2+y^2-2y=2xy-2\)

\(2x^2+y^2-2y-2xy+2=0\)

đc đến đây :v 

30 tháng 7 2016

cóA=2xy−4xy2−x2y−2x2y2cóA=2xy−4xy2−x2y−2x2y2
=xy(2-4y-x-2xy)
\Rightarrow A lớn nhất \Leftrightarrow xy(2-4y-x-2xy) lớn nhất 
mak` theo đề bài ta có 2\geqx\geq0 , \frac{1}{2}\geqy\geq0
do đó max xy(2-4y-x-2xy) =0

27 tháng 9 2023

\(xy^2-\left(x-2\right)\left(x^4+2x+1\right)=2y^2\)

\(\Rightarrow xy^2-2y^2-\left(x-2\right)\left(x^4+2x+1\right)=0\)

\(\Rightarrow y^2\left(x-2\right)-\left(x-2\right)\left(x^4+2x+1\right)=0\)

\(\Rightarrow\left(x-2\right)\left(y^2-x^4-2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\y^2-x^4-2x-1=0\end{matrix}\right.\)

Thay \(x=2\) vào \(y^2-x^4-2x-1=0\) ta có:

\(y^2-2^4-2\cdot2-1=0\)

\(\Rightarrow y^2-21=0\)

\(\Rightarrow y^2=21\)

\(\Rightarrow\left[{}\begin{matrix}y=\sqrt{21}\\y=-\sqrt{21}\end{matrix}\right.\)

Vậy (x;y) thỏa mãn là: \(\left(2;\sqrt{21}\right);\left(2;-\sqrt{21}\right)\)

27 tháng 9 2023

lý thuyết đầy đủ các phuong phap giai phuong trinh nghiem nguyen