K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

SUY RA : (2X+3)(3X-1)=(5-X)(3-6X)

6x^2-2x+9x-3=15-30x-3x+6x^2

7x-3=15-33x

7x+33x=15+3

40x=18

x=18/40

x=9/20

28 tháng 12 2017

\(P_1=\frac{3x^2+6x+10}{x^2+2x+3}\)

      \(=3+\frac{1}{x^2+2x+3}\)

Lại có: \(x^2+2x+3\)

          \(=\left(x+1\right)^2+2\ge2\)

\(\Rightarrow P_1\le3+\frac{1}{2}=\frac{7}{2}\)

Dấu = xảy ra khi x=-1

P2 tương tự

18 tháng 10 2015

tỷ lệ thức tương đương:

(2x+3)(10x+2) = (5x+2)(4x+5)

=> 20x2 + 30x + 4x + 6 =  20x2 + 8x + 25x +10

=> 20x2 + 30x + 4x - 20x2 - 8x - 25x =   10 - 6

=> x = 4

12 tháng 2 2020

\(ĐK:x\ne\frac{-2}{3};x\ne3\)

\(\frac{6x-1}{3x+2}=\frac{2x+5}{x-3}\)

\(\Rightarrow\left(6x-1\right)\left(x-3\right)=\left(2x+5\right)\left(3x+2\right)\)

\(\Rightarrow6x^2-x-18x+3=6x^2+15x+4x+10\)

\(\Rightarrow-19x+3=19x+10\)

\(\Rightarrow38x=-7\Rightarrow x=\frac{-7}{38}\left(tm\right)\)

12 tháng 2 2020

\(\frac{6x-1}{3x+2}=\frac{2x+5}{x-3}\)

<=> (6x-1)(x-3)=(2x+5)(3x+2)

<=> 6x2-18x-x+3=6x2+4x+15x+10

<=> 6x2-19x+3=6x2+19x+10

<=> 6x2-19x-19x-6x2=10-3

<=> -38x=7

<=> x=-7/38

1 tháng 8 2016

Ta có:\(\orbr{\begin{cases}2x-3y=3\\x+2y=2\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}4x-6y=6\\3x+6y=6\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}7x=12\\3x+6y=6\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{12}{7}\\3x+6y=6\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{12}{7}\\y=\frac{1}{7}\end{cases}}\)

Vậy tỉ lệ thức \(\frac{y}{x}=\frac{1}{12}\)

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)