K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left\{{}\begin{matrix}8x-7y=5\\12x+13y=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}24x-21y=15\\24x+26y=-16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-47y=31\\8x-7y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-31}{47}\\8x=5+7y=5+7\cdot\dfrac{-31}{47}=\dfrac{18}{47}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{9}{188}\\y=\dfrac{-31}{47}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{9}{188};\dfrac{-31}{47}\right)\)

8 tháng 1 2017

Cả hai à  tham thế i: 

Cộng Đại Số

\(\hept{\begin{cases}8x-7y=5\\12x+13y=-8\end{cases}\Leftrightarrow\hept{\begin{cases}24x-21y=15\left(1\right)\\24x+26y=-16\left(2\right)\end{cases}}}\)

Lấy (2) trừ (1)

\(\left(24x-24x\right)-21y-26y=15-\left(-16\right)\)

\(\Leftrightarrow47y=-31\Rightarrow y=\frac{31}{47}\)thay vào đầu x=5+7.31/47

SAI RỒI Y= -31/47

8 tháng 1 2017

dùng máy tính í

shift 5 1 rồi nhạp giá trị

8 tháng 1 2017

giống hệt bài của nguyễn thị phương thảo

16 tháng 6 2017

Hệ hai phương trình bậc nhất hai ẩn

29 tháng 1 2021

Hệ hai phương trình bậc nhất hai ẩn

NV
6 tháng 7 2021

\(x=-2+\sqrt{5}>0\Rightarrow x+2=\sqrt{5}\)

\(\Rightarrow\left(x+2\right)^2=5\Rightarrow x^2+4x=1\)

Ta có:

\(3x^5+12x^4-8x^3-23x^2-7x+1\)

\(=3x^3\left(x^2+4x\right)-8x^3-23x^2-7x+1\)

\(=-5x^3-23x^2-7x+1=-5x\left(x^2+4x\right)-3x^2-7x+1\)

\(=-3x^2-12x+1=-3\left(x^2+4x\right)+1=-3+1=-2\)

29 tháng 10 2016

a ) 13/20

B)

C..........................................................

minh dang tính

29 tháng 10 2016

lấy máy tính mà bấm

22 tháng 7 2019

a) ĐK: x2 - 7x + 8 ≥ 0

Đặt √(x2 - 7x + 8) = a (1)

⇔ a2 + a - 20 = 0

⇔ a = 4 hoặc a = -5

Thay vào (1) là tìm được x, kết hợp với ĐK là xong.

22 tháng 7 2019

b) Dễ chứng minh Vế Trái lớn hơn hoặc bằng 0.

Dấu "=" xảy ra khi x = -4; y=​ 4. ....... là nghiệm của pt

12 tháng 10 2017

a) Đặt \(\left(x^2-7x;\sqrt{x^2-7x+8}\right)=\left(a;b\right)\left(b\ge0\right)\)

Phương trình đã cho tương đương với hệ

\(\left\{{}\begin{matrix}a+b=12\\b^2-a=8\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=12\\b^2+b=20\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=20\\\left[{}\begin{matrix}b=4\\b=-5\end{matrix}\right.\end{matrix}\right.\)(Loại no -5)

\(\left\{{}\begin{matrix}a=16\\b=4\end{matrix}\right.\)

Thay a;b vào chỗ đặt ban đầu, giải phương trình bậc 2 tìm nghiệm

12 tháng 10 2017

c) Đặt \(\left(\sqrt{x-3};\sqrt{5-x}\right)=\left(a;b\right)\)

\(\left\{{}\begin{matrix}a+b=-\left(ab+3\right)\\a^2+b^2=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=-3-ab\\\left(a+b\right)^2-2ab=2\end{matrix}\right.\)

Lại đặt \(\left(a+b;ab\right)=\left(z;t\right)\)

\(\left\{{}\begin{matrix}z=-3-t\\z^2-2t=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}z=-3-t\\z^2-2\left(-3-z\right)=2\end{matrix}\right.\)

Tiếp tục giải ;v

11 tháng 1 2018