K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

\(pt\Leftrightarrow\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)

\(\Leftrightarrow\frac{10x+1-\left(9x+4\right)}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{3x-5-\left(2x-2\right)}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)

\(\Leftrightarrow x-3=0\Leftrightarrow x=3.\)

30 tháng 7 2016

chuyển vế thích hượp bình phương thôi bạnh

23 tháng 12 2020

ĐK: \(x\ge\dfrac{5}{3}\)

\(pt\Leftrightarrow\left(\sqrt{10x+1}-\sqrt{9x+4}\right)+\left(\sqrt{3x-5}-\sqrt{2x-2}\right)=0\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\dfrac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\dfrac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)

Dễ thấy \(\dfrac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\dfrac{1}{\sqrt{3x-5}+\sqrt{2x-2}}>0\)

\(pt\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\left(tm\right)\)

4 tháng 9 2018

\(\sqrt{10x+1}+\sqrt{3x-5}=\sqrt{9x+4}+\sqrt{2x-2}\left(ĐKXĐ: x\ge\frac{5}{3}\right)\) 
\(\Leftrightarrow\sqrt{10x+1}-\sqrt{9x+4}=\sqrt{2x-2}-\sqrt{3x-5}\)
\(\Leftrightarrow\frac{10x+1-\left(9x+4\right)}{\sqrt{10x+1}+\sqrt{9x+4}}=\frac{2x-2-\left(3x-5\right)}{\sqrt{2x-2}+\sqrt{3x-5}}\)
\(\Leftrightarrow\frac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}=\frac{3-x}{\sqrt{2x-2}+\sqrt{3x-5}}\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{2x-2}+\sqrt{3x-5}}\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=3\\\sqrt{10x+1}+\sqrt{3x-5}+\sqrt{9x+4}+\sqrt{2x-2}=0\left(vo.nghiem\right)\end{cases}}\)
\(\Leftrightarrow x=3\)
 

NV
9 tháng 12 2018

ĐKXĐ: \(x\ge\dfrac{5}{3}\)

\(\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\dfrac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\dfrac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)

\(\Leftrightarrow x-3=0\Rightarrow x=3\)

Do \(\dfrac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\dfrac{1}{\sqrt{3x-5}+\sqrt{2x-2}}>0\) \(\forall x\ge\dfrac{5}{3}\)

Vậy pt có nghiệm duy nhất \(x=3\)

9 tháng 12 2018

@Nguyễn Việt Lâm @TRẦN MINH HOÀNG @ Mashiro Shiina

NV
14 tháng 4 2020

ĐKXĐ: \(x\ge\frac{5}{3}\)

\(\Leftrightarrow\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}\ge0\)

\(\Leftrightarrow\frac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}\ge0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)\ge0\)

\(\Leftrightarrow x-3\ge0\) (do ngoặc đằng sau luôn dương)

\(\Rightarrow x\ge3\)

21 tháng 11 2019

đề đungs \(\sqrt{10x+1}+\sqrt{3x-5}=\sqrt{9x+4}+\sqrt{2x-2}\). ĐK: \(x\ge\frac{5}{3}\)

\(\Leftrightarrow\)\(\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)

\(\Leftrightarrow\)\(\frac{10x+1-9x-4}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{3x-5-2x+2}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)

\(\Leftrightarrow\)\(\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)

\(\Leftrightarrow\)\(x=3\) ( nhan )