tìm dư khi chia 1997^1997 cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 1998 ≡ 0 (mod 111) => 1997 ≡ -1 (mod 111) và 1999 ≡ 1 (mod 111)
Nên ta có: 1997^1998 + 1998^1999 +1999^2000 ≡ 2 (mod 111) (1997^1998 + 1998^1999 +1999^2000 )10 ≡ 210 (mod 111)
Mặt khác ta có: 210 = 1024 ≡ 25 (mod 111) Vậy (1997^1998 + 1998^1999 +1999^2000 ) ^ 10 chia cho 111 có số dư là 25
Em mới học lớp 8 nên ko biết các anh chị có cách làm như thế nào nhưng nếu dùng máy tính casio thì thế này ạ:
1997:2003 dư 1997
19972:2003 dư 36
=> 199710 đồng dư 365 là 1615 (mod 2003)
1997^20 đồng dư vs 1615^2 là 319 (mod 2003)
=> 1997^50 đồng dư vs 1615*319^2 là 1871 (mod 2003)
Cứ thế tính dần lên là đc
1997^100 : 2003 dư 1400
1997^200 :2003 dư 1066
1997^500 :2003 dư 1629
1997^1000 : 2003 dư 1669
1997^2001 đồng dư vs: 16692*1997 là 1669
vậy 19972001 chia cho 2003 dư 1669
Nếu em làm sai ở đâu nhờ amh chị sửa dùm nhé.
Mình làm cách khác được kết quả là 25
Còn cách này mình chưa biết làm , mong các bạn giúp đỡ
Đúng mình sẽ tick cho 2 tick
Ta có :
19971997 = (19972)998 . 1997 = 3988009998 . 1997
Mà 3988009 đồng dư với -1 theo ( Mod 13 ) => 3988009998 đồng dư với -1998 đồng dư với 1 theo ( Mod 13)
=> 1997 đồng dư với 8 theo ( Mod 13 )
=> 19971997 khi chia cho 13có số dư là :
( 1 . 8 ) = 8
Vậy 19971997 khi chia cho 13có số dư là 8