K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Xét tứ giác CIME có 

\(\widehat{MIC}\) và \(\widehat{MEC}\) là hai góc đối

\(\widehat{MIC}+\widehat{MEC}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: CIME là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

26 tháng 1 2022

CTV mà làm sơ sài v?

a) Xét (O) có 

\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ACB}=90^0\)(Hệ quả góc nội tiếp)

hay \(\widehat{HCB}=90^0\)

Xét tứ giác HKBC có 

\(\widehat{HKB}\) và \(\widehat{HCB}\) là hai góc đối

\(\widehat{HKB}+\widehat{HCB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: HKBC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

25 tháng 7 2016

Ly tự vẽ hình nhé, cô sẽ hướng dẫn :)

a. Ta thấy ON vuông góc CD; AH cũng vuông góc CD nên ON//AH. Lại có O là trung điểm AB nên ON là đường trung bình tam giác ABM. Vì vậy N là trung điểm BM.

b. Ta thấy N là trung điểm BM, là trung điểm CD nên CMDB là hình bình hành.

c. Ta thấy CM//DB mà DB vuông góc AD nên CM vuông góc AD.

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng

0
7 tháng 6 2021

a) Ta có: \(\angle ANM+\angle ABM=90+90=180\Rightarrow\) ABMN nội tiếp

b) Ta có: \(cos\angle BOA=\dfrac{OB}{OA}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow\angle BOA=60\)

Ta có: \(sin\angle BOH=sin60=\dfrac{\sqrt{3}}{2}\Rightarrow\dfrac{BH}{OB}=\dfrac{\sqrt{3}}{2}\)

\(\Rightarrow BH=\dfrac{\sqrt{3}}{2}OB=\dfrac{\sqrt{3}}{2}R\)

c) Ta có: \(OB^2=BA.BE\Rightarrow\dfrac{BO}{BE}=\dfrac{BA}{BO}\Rightarrow\dfrac{2BM}{BE}=\dfrac{BA}{\dfrac{BC}{2}}\)

\(\Rightarrow\dfrac{2BM}{BE}=\dfrac{2BA}{BC}\Rightarrow\dfrac{BM}{BE}=\dfrac{BA}{BC}\)

Xét \(\Delta MBE\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{BM}{BE}=\dfrac{BA}{BC}\\\angle MBE=\angle ABC=90\end{matrix}\right.\)

\(\Rightarrow\Delta MBE\sim\Delta ABC\left(c-g-c\right)\Rightarrow\angle BME=\angle BAC=\angle CMN\) (ABMN nội tiếp)

mà B,M,C thẳng hàng \(\Rightarrow\) E,M,N thẳng hàngundefined

6 tháng 6 2021

a)Vì AB tx (O)

`=>hat{ABO}=90^o`

Vì `MN bot AC`

`=>hat{ANM}=90^o`

Xét tg ABMN có:

`hat{ANM}+hat{ABO}=180^o`

`=>` tg ABMN nt

b)Xét tam giác vg ABO có:

`sinhat{BAO}=(AO)/(BO)=1/2`

`=>hat{BAO}=30^o`

`=>hat{BOA}=90^o-30^o=60^o`

Áp dụng đl pytago vào tam giác vg ABO

`=>AB^2=AO^2-BO^2=3R^2`

`=>AB=sqrt3R=3sqrt3`

Áp dụng htl vào tam giác vuong ABO có đg cao là BH

`=>BH.AO=AB.BO`

`=>BH.2R=sqrt3R.R=sqrt3R^2`

`=>BH=(sqrt3R)/2=(3sqrt3)/2`