K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2018

A C B D E F M N P H I K O

Ta có: \(\Delta\)ABC đều, D\(\in\)AB, DE\(\perp\)AB, E\(\in\)BC

=> \(\Delta\)BDE có các góc với số đo lần lượt là: 300; 600; 900 => BD=1/2BE

Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)

=> BD=CE. 

Xét \(\Delta\)BDE và \(\Delta\)CEF: ^BDE=^CEF=900; BD=CE; ^DBE=^ECF=600

=> \(\Delta\)BDE=\(\Delta\)CEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD

Xét \(\Delta\)BDE và \(\Delta\)AFD: BE=AD; ^DBE=^FAD=600; BD=AF => \(\Delta\)BDE=\(\Delta\)AFD (c.g.c)

=> ^BDE=^AFD=900 =>DF\(\perp\)AC (đpcm).

b) Ta có: \(\Delta\)BDE=\(\Delta\)CEF=\(\Delta\)AFD (cmt) => DE=EF=FD (các cạnh tương ứng)

=> \(\Delta\)DEF đều (đpcm).

c) \(\Delta\)DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP

Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200 (Kề bù)

=> \(\Delta\)PDM=\(\Delta\)MFN=\(\Delta\)NEP (c.g.c) => PM=MN=NP => \(\Delta\)MNP là tam giác đều.

d) Gọi AH; BI; CK lần lượt là các trung tuyến của \(\Delta\)ABC, chúng cắt nhau tại O.

=> O là trọng tâm \(\Delta\)ABC (1)

Do \(\Delta\)ABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300

Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC

Xét 3 tam giác: \(\Delta\)OAF; \(\Delta\)OBD và \(\Delta\)OCE:

AF=BD=CE

^OAF=^OBD=^OCE      => \(\Delta\)OAF=\(\Delta\)OBD=\(\Delta\)OCE (c.g.c)

OA=OB=OC

=> OF=OD=OE => O là giao 3 đường trung trực \(\Delta\)DEF hay O là trọng tâm \(\Delta\)DEF (2)

(Do tam giác DEF đều)

Dễ dàng c/m ^OFD=^OEF=^ODE=300 => ^OFM=^OEN=^ODP (Kề bù)

Xét 3 tam giác: \(\Delta\)ODP; \(\Delta\)OEN; \(\Delta\)OFM:

OD=OE=OF

^ODP=^OEN=^OFM          => \(\Delta\)ODP=\(\Delta\)OEN=\(\Delta\)OFM (c.g.c)

OD=OE=OF (Tự c/m)

=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của \(\Delta\)MNP

hay O là trọng tâm \(\Delta\)MNP (3)

Từ (1); (2) và (3) => \(\Delta\)ABC; \(\Delta\)DEF và \(\Delta\)MNP có chung trọng tâm (đpcm).

27 tháng 1 2018

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC

=> ΔBDE có các góc với số đo lần lượt là: 300 ; 600 ; 900  

=> BD=1/2BE

Mà BD=1/3BA => BD=1/2AD => AD=BE

=> AB-AD=BC-BE (Do AB=BC)

=> BD=CE. 

Xét ΔBDE và ΔCEF: ^BDE=^CEF=900 ; BD=CE; ^DBE=^ECF=600 => ΔBDE=ΔCEF (g.c.g)

=> BE=CF

=> BC-BE=AC-CF => CE=AF=BD Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600 ; BD=AF => ΔBDE=ΔAFD (c.g.c) => ^BDE=^AFD=900  =>DF⊥AC (đpcm).

b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt)

=> DE=EF=FD (các cạnh tương ứng)

=> Δ DEF đều (đpcm).

c) Δ DEF đều (cmt)

=> DE=EF=FD. Mà DF=FM=EN=DP

=> DF+FN=FE+EN=DE+DP <=> DM=FN=EP

Lại có: ^DEF=^DFE=^EDF=600

=> ^PDM=^MFN=^NEP=1200  (Kề bù)

=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.

d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O

=> O là trọng tâm ΔABC                                                                           (1)

Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác

=> ^OAF=^OBD=^OCE=300

Đồng thời là tâm đường tròn ngoại tiếp tam giác

=> OA=OB=OC

Xét 3 tam giác:

 ΔOAF; ΔOBD và ΔOCE: AF=BD=CE ^OAF=^OBD=^OCE     

=> ΔOAF=ΔOBD=ΔOCE (c.g.c) OA=OB=OC => OF=OD=OE

=> O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF                   (2)

(Do tam giác DEF đều) Dễ dàng c/m ^OFD=^OEF=^ODE=300

 => ^OFM=^OEN=^ODP (Kề bù)

Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM: OD=OE=OF ^ODP=^OEN=^OFM         

=> ΔODP=ΔOEN=ΔOFM (c.g.c) OD=OE=OF (Tự c/m) => OP=ON=OM (Các cạnh tương ứng)

=> O là giao 3 đường trung trực của ΔMNP hay O là trọng tâm ΔMNP             (3)

Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Đề sai rồi bạn

10 tháng 2 2022

e tk hen:

undefined

22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

3 tháng 5 2017

A B C D E K H M

a. Có thể em thiếu giả thiết đọ lớn của các canhk AB, AC. Nếu có, ta dùng định lý Pi-ta-go để tính độ dài BC.

b. Ta thấy ngay tam giác ABE bằng tam giác DBE (cạnh huyền - cạnh góc vuông)

Từ đó suy ra \(\widehat{ABE}=\widehat{DBE}\) hay BE là phân giác góc ABC.

c. Ta thấy  tam giác ABC bằng tam giác DBK (cạnh góc vuông - góc nhọn kề)

nên AC = DK.

d. Do tam giác ABE bằng tam giác DBE nên \(\widehat{AEB}=\widehat{DEB}\)

Lại có AH // KD (Cùng vuông góc BC) nên \(\widehat{AME}=\widehat{MED}\) (so le trong)

Vậy \(\widehat{AME}=\widehat{AEM}\)

Vậy tam giác AME cân tại A.