Giúp mình với
gtnn: (x+1)(x+2)(x+3)(x+4)
mình cảm ơn trước
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dùng công thức tính tổng
\(1+2+3+...+x=11325\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{2}=11325\)
\(\Leftrightarrow x\left(x+1\right)=22650\)
\(\Leftrightarrow x\left(x+1\right)=150.151\)
Nên x = 150
Vậy ,,,
\(1+2+3+4+...+x=11325\)
\(\Rightarrow\frac{x\left(x+1\right)}{2}=11325\)
\(\Rightarrow x\left(x+1\right)=11325\times2\)
\(\Rightarrow x\left(x+1\right)=22650\)
\(\Rightarrow150\times151=22650\)
\(\Rightarrow x=150\)
1) \(A=36x^2+12x+1=\left(6x+1\right)^2\ge0\)
\(minA=0\Leftrightarrow x=-\dfrac{1}{6}\)
2) \(B=9x^2+6x+1=\left(3x+1\right)^2\ge0\)
\(minB=0\Leftrightarrow x=-\dfrac{1}{3}\)
4) \(D=x^2-4x+y^2-8y+6=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
\(minD=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
3) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)
\(minC\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
5) \(E=\left(x-8\right)^2+\left(x+7\right)^2=2x^2-2x+113=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{225}{2}\ge\dfrac{225}{2}\)
\(minE=\dfrac{225}{2}\Leftrightarrow x=\dfrac{1}{2}\)
Ta có \(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)>0,\forall x\)
Mặt khác: \(x^2-3x+1=2\left(x^2-x+1\right)-\left(x^2+x+1\right)\)
Đặt \(y=\sqrt{\frac{x^2-x+1}{x^2+x+1}}\)(có thể viết điều kiện \(y\ge0\)hoặc chính xác hơn là \(\frac{\sqrt{3}}{3}\le y\le\sqrt{3}\)), ta được:
\(2y^2-1=\frac{-\sqrt{3}}{3}y=0\Leftrightarrow6y^2+\sqrt{3y}-3=0\), ta được \(y=\frac{\sqrt{3}}{3}\)(loại \(y=\frac{-\sqrt{3}}{2}\))
=> Phương trình có nghiệm là x=1
a) x - 1/2 = 3/5
x = 3/5 + 1/2
x = 11/10
b) x - 1/2 = -2/3
x = -2/3 + 1/2
x = -1/6
c) 2/5 - x = 0,25
x = 2/5 - 0,25
x = 2/5 - 1/4
x = 3/20
\(\dfrac{3-3x}{\left(1+x\right)^2}:\dfrac{6x^2-6}{x+1}\)
\(=\dfrac{3\left(1-x\right)}{\left(x+1\right)^2}:\dfrac{6\left(x^2-1\right)}{x+1}\)
\(=\dfrac{-3\left(x-1\right)}{\left(x+1\right)^2}:\dfrac{6\left(x+1\right)\left(x-1\right)}{x+1}\)
\(=\dfrac{-3\left(x-1\right)}{\left(x+1\right)^2}\cdot\dfrac{x+1}{6\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{-3\left(x-1\right)\left(x+1\right)}{6\left(x+1\right)^3\left(x-1\right)}=\dfrac{-3\left(x+1\right)}{6\left(x+1\right)\left(x+1\right)^2}=\dfrac{-3}{6\left(x+1\right)^2}=\dfrac{-1}{2\left(x+1\right)^2}\)
b) Bạn có thể viết kiểu latex được không ạ ?
(x+1)(x+2)(x+3)(x+4)
= (x+1)(x+4)(x+2)(x+3)
= (x2+5x+4)(x2+5x+6)
=(x2+5x+4)2+2(x2+5x+4)+1-1
= (x2+5x+5)2-1
Vì (x2+5x+5)2 luôn lớn hơn hoặc bằng 0 với mọi x=> (x2+5x+5)2-1 luôn lớn hơn hoặc bằng -1 với mọi x
=> GTNN của (x+1)(x+2)(x+3)(x+4) là -1 khi và chỉ khi x = \(\sqrt{1,25}\)-2,5 hoặc x = - (2,5+\(\sqrt{1,25}\))
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(=x.\left(x+2\right)+1.\left(x+2\right)+x.\left(x+3\right)+1.\left(x+3\right)+x.\left(x+4\right)+1.\left(x+4\right)\)
\(=x^2+2x+x+2+x^2+3x+x+3+x^2+4x+x+4\)
\(=3x^2+12x+9\)
Vậy GTNN là 9