Cho đoạn thẳng AB cố định M sao cho MA>MB và \(MA^2-MB^2=a\)(a không đổi). Tìm tập hợp điểm M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi D là trung điểm BC và G là trọng tâm tam giác ABC
Theo tính chất trọng tâm: \(AG=\dfrac{2}{3}AD\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=\left|\overrightarrow{MA}+\overrightarrow{BM}+\overrightarrow{MA}+\overrightarrow{CM}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right|=\left|\overrightarrow{BA}+\overrightarrow{CA}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MG}\right|=\left|-2\overrightarrow{AD}\right|\)
\(\Leftrightarrow MG=\dfrac{2}{3}AD=AG\)
\(\Rightarrow\) Tập hợp M là mặt cầu tâm G bán kính AG với G là trọng tâm tam giác ABC
B1) Tỉ số của AB=11( vì 7+4)
Tỉ số của MA/AB=7/11
TỈ SỐ AB/MB= 11/4
B2) Độ dài đoạn AB= 10:2=5
Độ dài đoạn MB =10-5
k nhá
B1: Ta có: Tỉ số của AB là 11 ( = tỉ số MA + tỉ số MB)
=> tỉ số của MA/AB=7/11
tỉ số của AB/MB=11/4
B2: Độ dài của MA: 10/(2+3).2=4 cm
=> MB=AB-MA=10-4=6 cm
Chúc e hc tốt
a﴿ ANC=90 chắn nữa dg tròn
=>ANC+CAN+CAB+ABC=180
=>ANC+CAN+ACN+ACB+CAB+ABC=360
=>ACN+ACB=180
=>b,c,n THẲNG HÀNG
Chứng minh tương tự A,N,D...
Gọi I là trung điểm AB \(\Rightarrow\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}\right|=\left|\overrightarrow{MA}+\overrightarrow{BM}\right|\)
\(\Leftrightarrow\left|2\overrightarrow{MI}\right|=\left|\overrightarrow{BA}\right|\)
\(\Leftrightarrow MI=\frac{1}{2}AB\)
Tập hợp M là đường tròn tâm I bán kính \(R=\frac{AB}{2}\)
kẻ MH vuông góc với AB.
Th1: H nằm trong đoạn AB (hình vẽ)
Đặt \(AB=c\).
áp dụng định lý pitago ta có: \(MA^2=MH^2+HA^2,MB^2=MH^2+HB^2\)
SUY RA: \(MA^2-MB^2=HA^2-HB^2=\left(HA-HB\right)\left(HA+HB\right)=a\)
Do H nằm trên đoạn AB nên HA+HB=a từ đó suy ra: \(HA-HB=\frac{a}{HA+HB}=\frac{a}{c}\)
Mà HA+HB=c suy ra: \(HA=\left(\frac{a}{c}+c\right):2=\frac{a+c^2}{2c}\)(không đổi).
Suy ra M nằm trên đường thẳng qua H ( H thuộc đoạn AB, \(HA=\frac{a+c^2}{2c}\)) vuông góc với AB.
TH2: H nằm ngoài đoạn AB ta có HA-HB=AB=c. Lập luận tương tự ta cũng có kết quả như TH1.
M là trung điểm AB, a=0