K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 3 2022

a.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\\AB\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\)

b.

Ta có \(CD||AB\) (do ABCD là hcn)

Mà \(AB\perp\left(SAD\right)\Rightarrow CD\perp\left(SAD\right)\)

Lại có \(CD\in\left(SCD\right)\)

\(\Rightarrow\left(SCD\right)\perp\left(SAD\right)\)

c.

\(SA\perp\left(ABCD\right)\Rightarrow AD\) là hình chiếu vuông góc của SD lên (ABCD)

\(\Rightarrow\widehat{SDA}\) là góc giữa SD và (ABCD)

\(tan\widehat{SDA}=\dfrac{SA}{AD}=\dfrac{\sqrt{6}}{2}\Rightarrow\widehat{SDA}\approx50^046'\)

d.

Ta có: \(SA\perp\left(ABCD\right)\Rightarrow SA\perp\left(ACD\right)\)

Mà \(SA\in\left(SAD\right)\Rightarrow\left(SAD\right)\perp\left(ACD\right)\) (1)

Theo câu b ta có: \(\left(SAD\right)\perp\left(SCD\right)\) (2)

(1);(2) \(\Rightarrow\widehat{SDA}\) là góc giữa (SCD) và (ACD)

Theo câu c ta có: \(\widehat{SDA}=50^046'\)

NV
24 tháng 3 2022

undefined

NV
27 tháng 3 2022

\(y=\left(x^7+x\right)^3\)

\(y'=3\left(x^7+x\right)^2.\left(x^7+x\right)'=3\left(x^7+x\right)^2\left(7x^6+1\right)\)

NV
17 tháng 4 2022

7.

\(y'=3x^2+8x-1\)

\(\Rightarrow y'\left(2\right)=3.2^2+8.2-1=27\)

ĐKXĐ: \(x\notin\left\{0;-9\right\}\)

Ta có: \(\dfrac{1}{x+9}-\dfrac{1}{x}=\dfrac{1}{5}+\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{20x}{20x\left(x+9\right)}-\dfrac{20\left(x+9\right)}{20x\left(x+9\right)}=\dfrac{4x\left(x+9\right)+5x\left(x+9\right)}{20x\left(x+9\right)}\)

Suy ra: \(4x^2+36x+5x^2+45x=20x-20x-180\)

\(\Leftrightarrow9x^2+81x+180=0\)

\(\Leftrightarrow x^2+9x+20=0\)

\(\Leftrightarrow x^2+4x+5x+20=0\)

\(\Leftrightarrow x\left(x+4\right)+5\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(nhận\right)\\x=-5\left(nhận\right)\end{matrix}\right.\)

Vậy: S={-4;-5}

NV
14 tháng 4 2022

7.

\(y'=\left(-x^3\right)'-\left(5x\right)'+\left(2\right)'=-3x^2-5\)

\(y''=\left(-3x^2\right)'-\left(5\right)'=-6x\)

8.

\(\lim\limits_{x\rightarrow+\infty}\left(x^3+3x-2\right)=\lim\limits_{x\rightarrow+\infty}x^3\left(1+\dfrac{3}{x^2}-\dfrac{2}{x^3}\right)\)

Do: \(\lim\limits_{x\rightarrow+\infty}x^3=+\infty\)

\(\lim\limits_{x\rightarrow+\infty}\left(1+\dfrac{3}{x^2}-\dfrac{2}{x^3}\right)=1>0\)

\(\Rightarrow\lim\limits_{x\rightarrow+\infty}x^3\left(1+\dfrac{3}{x^2}-\dfrac{2}{x^3}\right)=+\infty\)

27 tháng 4 2022

undefined

8 tháng 5 2021

Hướng làm:

Thấy cả tử mẫu cộng lại đều bằng 2021 → Cộng thêm 1 rồi quy đồng với mỗi phân thức

\(\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\\ \Leftrightarrow\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\\ \Leftrightarrow\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}\right)=0\\ \Leftrightarrow x+2021=0\Leftrightarrow x=-2021\)

8 tháng 5 2021

\(< =>\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\)

\(< =>\dfrac{x+2+2019}{2019}+\dfrac{x+3+2018}{2018}=\dfrac{x+4+2017}{2017}+\dfrac{x+2021}{2021}\)

\(< =>\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\)

\(< =>\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}=\right)=0\)

\(< =>x+2021=0< =>x=-2021\)

Vậy....

 

13 tháng 11 2021

a: AC=4cm

AH=2,4cm

BH=1,8cm

CH=3,2cm